高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限平面LDPC码的停止集

夏树涛 胡懋智

夏树涛, 胡懋智. 有限平面LDPC码的停止集[J]. 电子与信息学报, 2007, 29(6): 1365-1368. doi: 10.3724/SP.J.1146.2005.01328
引用本文: 夏树涛, 胡懋智. 有限平面LDPC码的停止集[J]. 电子与信息学报, 2007, 29(6): 1365-1368. doi: 10.3724/SP.J.1146.2005.01328
Xia Shu-tao, Hu Mao-zhi. On the Stopping Sets of Finite Plane LDPC Codes[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1365-1368. doi: 10.3724/SP.J.1146.2005.01328
Citation: Xia Shu-tao, Hu Mao-zhi. On the Stopping Sets of Finite Plane LDPC Codes[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1365-1368. doi: 10.3724/SP.J.1146.2005.01328

有限平面LDPC码的停止集

doi: 10.3724/SP.J.1146.2005.01328
基金项目: 

国家自然科学基金(60402031)和国家重点基础研究发展计划973 (2003CB314805)资助课题

On the Stopping Sets of Finite Plane LDPC Codes

  • 摘要: 有限平面LDPC码是一类重要的有结构的LDPC码,在利用和积算法(SPA)等迭代译码方法进行译码时表现出卓越的纠错性能。众所周知,次优的迭代译码不是最大似然译码,因而如何对迭代译码的性能进行理论分析一直是LDPC码的核心问题之一。近几年来,Tanner图上的停止集(stopping set)和停止距离(stopping distance)由于其在迭代译码性能分析中的重要作用而引起人们的重视。该文通过分析有限平面LDPC码的停止集和停止距离,从理论上证明了有限平面LDPC码的最小停止集一定是最小重量码字的支撑,从而对有限平面LDPC码在迭代译码下的良好性能给出了理论解释。
  • Kschischang F R, Frey B J, and Loeliger H A. Factor graphs and the sum-product algorithm[J].IEEE Trans. on Inform. Theory.2001, 47(2):498-519[2]Kou Y, Lin S, and Fossorier M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans. on Inform. Theory.2001, 47(7):2711-2736[3]Tang H, Xu J, Lin S, and Abdel-Ghaffar K A S. Codes on finite geometries[J].IEEE Trans. on Inform. Theory.2005, 51(2):572-569[4]Lin S and Costello DJ. Error Control Coding: Fudamentals and Applications, 2nd Ed, Upper Saddle River, NJ: Prentice-Hall, 2004, Chap. 8: 273-282.[5]Di C, Proietti D, Telatar I E, Richardson T J, and Urbanke R L. Finite-length analysis of low-density parity-check codes on the binary erasure channel[J].IEEE Trans. on Inform. Theory.2002, 48(6):1570-1579[6]Kashyap N and Vardy A. Stopping sets in codes from designs. in Proc. IEEE Int. Sym. Inform. Theory, Yokohama, Japan, Jul. 2003: 122.[7]Schwartz M and Vardy A. On the stopping distance and the stopping redundancy of codes[J].IEEE Trans. on Inform. Theory.2006, 52(3):922-932[8]Koetter R and Vontobel PO. Graph covers and iterative decoding of finite-length codes. In Proc. 3rd Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept. 2003: 75-82.[9]Feldman J, Wainwright M J, and Karger D R. Using linear programming to decode binary linear codes[J].IEEE Trans. on Inform. Theory.2005, 51(3):954-972[10]Chaichanavong P and Siegel PH. Relaxation bounds on the minimum pseudo-weight of linear codes. In Proc. IEEE Int. Symp. Inform. Theory, Sept. Adelaide, Australia 2005: 805-809.[11]Vontobel P O and Koetter R. Lower bounds on the minimum pseudo-weight of linear codes. In Proc. IEEE Int. Symp. Inform. Theory, Chicago, U.S.A., 2004: 70.[12]Vontobel P O, Smarandache R, and Kiyavash N, et al.. On the minimal pseudo-codewords of codes from finite geometries. In Proc. IEEE Int. Symp. Inform. Theory, Adelaide, Australia, Sept. 2005: 980-984.
  • 加载中
计量
  • 文章访问数:  3216
  • HTML全文浏览量:  105
  • PDF下载量:  1057
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-24
  • 修回日期:  2006-04-19
  • 刊出日期:  2007-06-19

目录

    /

    返回文章
    返回