高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双星同中心频率多发多收的方位解模糊

井伟 邢孟道 保铮

井伟, 邢孟道, 保铮. 双星同中心频率多发多收的方位解模糊[J]. 电子与信息学报, 2007, 29(5): 1077-1082. doi: 10.3724/SP.J.1146.2005.01210
引用本文: 井伟, 邢孟道, 保铮. 双星同中心频率多发多收的方位解模糊[J]. 电子与信息学报, 2007, 29(5): 1077-1082. doi: 10.3724/SP.J.1146.2005.01210
Jing Wei, Xing Meng-dao, Bao Zheng. Removal of Azimuth Ambiguities with Bi-satellite by Multiple Transmitting and Multiple Receiving[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1077-1082. doi: 10.3724/SP.J.1146.2005.01210
Citation: Jing Wei, Xing Meng-dao, Bao Zheng. Removal of Azimuth Ambiguities with Bi-satellite by Multiple Transmitting and Multiple Receiving[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1077-1082. doi: 10.3724/SP.J.1146.2005.01210

双星同中心频率多发多收的方位解模糊

doi: 10.3724/SP.J.1146.2005.01210
基金项目: 

微波成像技术国家重点实验室基金(514420404DZ0102)资助课题

Removal of Azimuth Ambiguities with Bi-satellite by Multiple Transmitting and Multiple Receiving

  • 摘要: 为了在星载合成孔径雷达中获得高横向分辨率和宽测绘带,卫星可以采用横向孔径小的天线和较低的重复频率,此时回波信号会产生方位多普勒模糊,可以通过发射多颗卫星获得的多个空间自由度来解模糊。该文提出了沿航向分布的两颗小卫星同时独立发射中心频率相同的正负调频率信号,利用形成的3个等效相位中心通过简化滤波权矢量计算的空域滤波法来解3个方位多普勒模糊。理论分析和仿真结果证实了该方法的有效性。
  • Cantafio L J(Ed.). Space-Based Radar Handbook. Boston: Artech House, 1989: 127-132.[2]魏钟铨等著. 合成孔径雷达卫星 [M]. 北京: 科学出版社, 2001年(空间信息获取与处理系列专著): 1-8.[3]周荫清, 徐华平,陈杰. 分布式小卫星合成孔径雷达研究进展. 电子学报, 2003, 31(12A): 1939-1944. Zhou Yin-qing, Xu Hua-ping, and Chen Jie. Research progress of distributed small satellites synthetic aperture radar. Acta Electronica Sinica, 2003, 31(12A): 1939-1944.[4]雷万明, 刘光炎, 黄顺吉. 分布式卫星SAR的波束形成和多视处理成像[J].电子与信息学报.2002, 24(11):1620-1626浏览[5]Martin M and Michael J. Distributed satellite missions and technologiesThe TechSat 21 Program. AIAA Space Technology Conference Expostion Sept. 1999 Albuquerque, NM, AIAA-99-4479: 28-30.[6]Martin M and Kilberg S. TechSat 21 and revolutionizing space missions using microsatellites. Proc.15th.AIAA/USU Conference on Small Satellites, Logan, Utah, 2001: SSC01-1-3.[7]Massonnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Trans. on GRS, 2001, 39(3): 506-520.[8]Currie A and Brown M A. Wide-swath SAR. IEE Proc.- Radar, Sonar Navig, 1992, 139(2): 122-135.[9]Callaghan G D and Longstaff I D. Wide-swath space-borne SAR and range ambiguity. Proceedings of Radar 97, Edinburgh, UK, October 1997: 248-252.[10]Li F K and Johnson W T K. Ambiguities in spaceborne synthetic aperture radar systems. IEEE Trans. on AES, 1983, 19(3): 389-397.[11]李真芳, 邢孟道, 王彤, 保铮. 分布式小卫星SAR实现全孔径分辨率的信号处理. 电子学报, 2003, 31(12): 1800-1804. Li Zhen-fang, Xing Meng-dao, Wang Tong, and Bao Zheng. Distributed Small Satellites SAR Signal Processing for Achieving Full Azimuth Resolution. Acta Electronica Sinica, 2003, 31(12): 1800-1804.[12]Aguttes J P. The SAR train concept: Required antenna area distributed over N smaller satellites, Increase of performance by N. IGARSS 2003, Toulouse, France: 542-544.[13]Krieger G, Gebert N, and Moreira A. Digital beamforming and non-uniform displaced phase centre sampling in bi- and multistatic SAR. EUSAR, Ulm, Germany, 2004: 563-566.[14]Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Boston: Artech House, 1995: 423-424.[15]Younis M, Fischer C, and Wiesbech W. Digital beamforming in SAR systems. IEEE Trans. on GRS, 2003, 41(71): 1735-1739.
  • 加载中
计量
  • 文章访问数:  3155
  • HTML全文浏览量:  90
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-09-23
  • 修回日期:  2006-03-20
  • 刊出日期:  2007-05-19

目录

    /

    返回文章
    返回