高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于SVM主动学习的卡通视频检测方法

高新波 田春娜 张娜

高新波, 田春娜, 张娜. 一种基于SVM主动学习的卡通视频检测方法[J]. 电子与信息学报, 2007, 29(6): 1338-1342. doi: 10.3724/SP.J.1146.2005.01193
引用本文: 高新波, 田春娜, 张娜. 一种基于SVM主动学习的卡通视频检测方法[J]. 电子与信息学报, 2007, 29(6): 1338-1342. doi: 10.3724/SP.J.1146.2005.01193
Gao Xin-bo, Tian Chun-na, Zhang Na. A Cartoon Video Detection Method Based on Active SVM Learning[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1338-1342. doi: 10.3724/SP.J.1146.2005.01193
Citation: Gao Xin-bo, Tian Chun-na, Zhang Na. A Cartoon Video Detection Method Based on Active SVM Learning[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1338-1342. doi: 10.3724/SP.J.1146.2005.01193

一种基于SVM主动学习的卡通视频检测方法

doi: 10.3724/SP.J.1146.2005.01193
基金项目: 

新世纪优秀人才支持计划(NCET-04-0948),教育部重点项目(10417 3),国家自然科学基金(60202004)和教育部留学归国人员实验室资助课题

A Cartoon Video Detection Method Based on Active SVM Learning

  • 摘要: 通过分析卡通与非卡通视频在视觉上的差异,对视频片断提取了MPEG-7描述子等8组视觉特征来构造卡通视频的特征空间;并将主动相关反馈技术引入到支撑向量机(SVM)算法中,设计了一种基于主动学习的卡通视频检测分类方法。利用大量实际视频片断所做的测试实验结果表明,该文选取的特征对卡通和非卡通视频有较好的区分能力;且与单纯的SVM算法以及传统相关反馈和SVM算法结合的方法相比,该文算法在检测性能上有较大的优势。
  • Fischer S, Lienhart R, and Effelsberg W. Automatic recognition of film genres. The 3rd ACM International Multimedia Conference and Exhibition. San Francisco, California, USA, Nov. 5-9, 1995, 1: 295-304.[2]Ianeva T I, de Vries A P, and Rohrig H. Detecting cartoons: A case study in automatic video-genre classification. Proc. IEEE International Conference on Multimedia and Expo. Baltimore, Maryland, Jul. 6-9, 2003, 1: 449-452.[3]Roach M, Mason J S, and Pawlewski M. Motion-based classification of cartoons. International Conference on Intelligent Multimedia, Video and Speech Processing, Hong Kong, May 2-4, 2001: 146-149.[4]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans. on Neural Networks.1999, 10(3):626-634[5]田春娜, 高新波, 李洁. 基于嵌入式Bootstrap的主动学习示例选择方法. 计算机研究与发展, 2006, 43(10): 1706-1712. Tian C N, Gao X B, and Li J. An example selection method for active learning based on embedded Bootstrap algorithm. Journal of Computer Research and Development, 2006, 43(10): 1706-1712.[6]陈可佳, 姜远, 周志华. 基于主动相关反馈的图像检索方法. 模式识别与人工智能, 2005, 18(4): 480-485. Chen K J, Jiang Y, and Zhou Z H. An image retrieval method based on active relevance feedback. Pattern Recognition and Artificial Intelligence, 2005, 18(4): 480-485.[7]Zhang L, Lin F Z, and Zhang B. A CBIR method based on color-spatial feature. Proceedings of the IEEE Region 10 Conference on TENCON. Korea. Sept. 15-17, 1999, 1: 166-169.[8]Manjunath B S, Ohm J R, and Vasudevan V V, et al.. Color and texture descriptors[J].IEEE Trans. on Circuits and Systems for Video Technology.2001, 11(6):703-715[9]Ro Y M, Kim M, and Kang K, et al.. MPEG-7 homogeneous texture descriptor[J].ETRI Journal.2001, 23(2):41-51[10]Hasler D and Susstrunk S. Measuring colourfulness in natural images. Proc. SPIE/IST Human Vision and Electronic Imaging. Santa Clara, California, USA, Jan. 20-24, 2003: 87-95.[11]Burges C J C. A tutorial on support vector machines for pattern recognition[J].Knowledge Discovery and Data Mining.1998, 2(2):121-167[12]Gao X B and Tang X. Unsupervised video shot segmentation and model-free anchorperson detection for news video story parsing, IEEE Trans[J].on Circuits Systems for Video Technology.2002, 12(9):765-776
  • 加载中
计量
  • 文章访问数:  2842
  • HTML全文浏览量:  93
  • PDF下载量:  1824
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-09-19
  • 修回日期:  2006-11-22
  • 刊出日期:  2007-06-19

目录

    /

    返回文章
    返回