高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棱边元分区的区域分解算法及其在电磁问题中的应用

吕志清 安翔 洪伟

吕志清, 安翔, 洪伟. 棱边元分区的区域分解算法及其在电磁问题中的应用[J]. 电子与信息学报, 2007, 29(5): 1232-1235. doi: 10.3724/SP.J.1146.2005.01122
引用本文: 吕志清, 安翔, 洪伟. 棱边元分区的区域分解算法及其在电磁问题中的应用[J]. 电子与信息学报, 2007, 29(5): 1232-1235. doi: 10.3724/SP.J.1146.2005.01122
Lü Zhi-qing, An Xiang, Hong Wei. Edge-Element Partitioning Domain Decomposition Method for Electromagnetic Problems[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1232-1235. doi: 10.3724/SP.J.1146.2005.01122
Citation: Lü Zhi-qing, An Xiang, Hong Wei. Edge-Element Partitioning Domain Decomposition Method for Electromagnetic Problems[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1232-1235. doi: 10.3724/SP.J.1146.2005.01122

棱边元分区的区域分解算法及其在电磁问题中的应用

doi: 10.3724/SP.J.1146.2005.01122

Edge-Element Partitioning Domain Decomposition Method for Electromagnetic Problems

  • 摘要: 针对三维电磁问题,该文提出了采用非结构化网格剖分计算区域,并按单元进行区域划分的区域分解算法。将原求解区域划分为若干个不重叠的子区域,先通过求解容量矩阵获得子区域之间连接边界上的场值,再利用矢量有限元快速计算出每个子区域内部的场值,显著地降低了计算复杂度和存储量。通过引入预条件的Krylov子空间法求解容量矩阵方程,加速了收敛,进一步提高了效率。数值算例验证了该方法的准确性和有效性。
  • Despres B. Domain decomposition method and the Helmholtz problem[A]. Proc. Int. Symp. Mathemat. Numerical Aspects Wave Propagation Phenomena[C]. Strasbourg France: SIAM, 1992: 44-52.[2]Despres B. Domain decomposition method and the Helmholtz problem (Part II)[A]. Proc. 2nd Int. Conf. Mathemat. Numerical Aspects Wave propagation[C]. Dover, DE: SIAM, 1993: 197-206.[3]Strupfel Bruno. A fast-domain decomposition method for the solution of electromagnetic scattering by large objects[J].IEEE Trans. on Antennas and Propagat.1996, 44(10):1375-1385[4]Strupfel Bruno and Martine Mognot. A domain decomposition method for the vector wave equation[J].IEEE Trans. on Antennas and Propagat.2000, 48(5):653-660[5]吕涛, 石济民, 林振宝. 区域分裂算法偏微分方程数值解新技术[M]. 北京: 科学出版社, 1997,第5章.[6]洪伟, 孙连友, 许锋, 尹雷等. 电磁场边值问题的区域分解算法[M]. 北京: 科学出版社, 2005: 36-78.[7]Yin Lei, Wang Jie, and Hong Wei. A novel and rigorous method based on the domain decomposition method for the full-wave analysis of 3-D structures[J].IEEE Trans. on Microwave Theory and Techniques.2002, 50(8):2011-2017[8]Hong Wei.[J].Yin Xiao Xing, An Xiang, L Zhi Qing, and Cui Tie Jun. A mixed algorithm of domain decomposition method and the measured equation of invariance for the electromagnetic problems[A]. IEEE Antennas and Propagation Society International Symposium[C]. Monterey, CA: IEEE PRESS.2004,:-[9]An Xiang, L Zhi Qing, Hong wei, Cui Tie Jun, and Yin Xiao Xing. The application of PBSV-DDM in EM scattering analysis of electrically large 2-D objects[J]. Journal of Applied Sciences, 2005, 23(2): 122-125.[10]Lu Y J and Shen C Y. A domain decomposition finite difference method for parallel numerical implementation of time dependent Maxwells equations[J].IEEE Trans. on Antennas and Propagat.1997, 45(3):556-562[11]An Xiang and L Zhi Qing. Application of DDM based on special ordered nodes in 2-D electromagnetic scattering[J]. Journal of Microwaves, 2005, 21(3): 12-15.[12]安翔. 计算电磁学中的网格生成与区域分解算法[D]. 南京: 东南大学博士后研究报告, 2004,第3章.[13]尹雷. 区域分裂算法及其在电磁问题中的应用[D]. [博士学位论文],南京: 东南大学, 2001,第5章.[14]Saad Yousef. Iterative Methods for Sparse Linear Systems[M]. New York: PWS Publishing Company, 1996, chapter 9.[15]Chan T F. The interface probing technique in domain decomposition method[J].SIAM Journal on Matrix Analysis and Applications.1992, 13(1):212-238[16]金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学出版社, 1997,第8章.[17]Harrington R F. Time Harmonic Electromagnetic Fields[M]. New York: McGraw-Hill, 1961, chapter 6.[18]葛德彪. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002,第4章.
  • 加载中
计量
  • 文章访问数:  3054
  • HTML全文浏览量:  104
  • PDF下载量:  934
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-09-05
  • 修回日期:  2006-03-13
  • 刊出日期:  2007-05-19

目录

    /

    返回文章
    返回