高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蚁群算法和Powell法结合的多分辨率三维图像配准

杨帆 张汗灵

杨帆, 张汗灵. 蚁群算法和Powell法结合的多分辨率三维图像配准[J]. 电子与信息学报, 2007, 29(3): 622-625. doi: 10.3724/SP.J.1146.2005.01010
引用本文: 杨帆, 张汗灵. 蚁群算法和Powell法结合的多分辨率三维图像配准[J]. 电子与信息学报, 2007, 29(3): 622-625. doi: 10.3724/SP.J.1146.2005.01010
Yang Fan, Zhang Han-ling. Multiresolution 3D Image Registration Using Hybrid Ant Colony Algorithm and Powells Method[J]. Journal of Electronics & Information Technology, 2007, 29(3): 622-625. doi: 10.3724/SP.J.1146.2005.01010
Citation: Yang Fan, Zhang Han-ling. Multiresolution 3D Image Registration Using Hybrid Ant Colony Algorithm and Powells Method[J]. Journal of Electronics & Information Technology, 2007, 29(3): 622-625. doi: 10.3724/SP.J.1146.2005.01010

蚁群算法和Powell法结合的多分辨率三维图像配准

doi: 10.3724/SP.J.1146.2005.01010
基金项目: 

湖南大学校基金(2004018)资助课题

Multiresolution 3D Image Registration Using Hybrid Ant Colony Algorithm and Powells Method

  • 摘要: 基于互信息的配准方法具有精度高,鲁棒性强的特点,成为近年来图像配准研究的热点。但基于互信息的目标函数存在许多局部极值,为配准的优化过程带来了很大的困难。该文提出了一种蚁群算法和Powell法相结合的多分辨率搜索优化算法。该算法以互信息作为相似性测度,采用基于小波变换的多分辨率策略,将蚁群算法与Powell法结合起来对三维的CT,MR图像进行了配准。实验结果表明,这种方法能够有效地克服互信息函数的局部极值,大大地提高了配准精度,达到亚像素级。
  • [1] Maes F, Collignon A, and Vandermeulen D, et al.. Multimodality image registration by maximization of mutual information[J].IEEE Trans. on Medical Imaging.1997, 16(2):187-198 [2] Maes F, Vandermeulen D, and Suetens P. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information[J].Medical Image Analysis.1999, 3(4):373-386 [3] Pluim J P W, Maintz J B A, and Viergever M A. Mutual information based registration of medical images: A survey[J].IEEE Trans. on Medical Imaging.2003, 22(8):986-1004 [4] Plattard D, Soret M, and Troccaz J, et al.. Patient set-up using portal images: 2D/2D image registration using mutual information[J].Computer Aided Surgery.2000, 5(4):246-262 [5] Jenkinson M and Smith S. A global optimization method for robust affine registration of brain images[J].Medical Image Analysis.2001, 5(2):143-156 [6] Wachowiak M P, Smolikova R, and Zheng Y. An approach to multimodal biomedical image registration utilizing particle swarm optimization[J].IEEE Trans. on Evolutionary Computation.2004, 8(3):289-301 [7] Wachowiak M P. Similarity metrics and optimization for multimodal biomedical image registration. [Dissertation], University of Louisville, 2003. [8] Studholme C, Hill D L G, and Hawkes D J. An overlap invariant entropy measure of 3D medical image alignment[J].Pattern Recognition.1999, 32(1):71-86 [9] 杨虎, 马斌荣, 任海萍等. 基于互信息的人脑图像配准研究. 中国医学物理学杂志, 2001, 18(2): 69-73. Yang Hu, Ma Bin-rong, and Ren Hai-ping. Human brain image registration using mutual information. Chinese Journal of Medical Physics, 2001, 18(2): 69-73. [10] 马良. 来自昆虫世界的寻优策略蚂蚁算法. 自然杂志, 1999, 21(3): 161-163. Ma Liang. Ant algorithm─optimization strategy from the insect colony. Chinese Journal of Nature, 1999, 21(3): 161-163. [11] Dorigo M, Maniezzo V, and Colorni A. Ant system: Optimization by a colony of cooperating agents[J].IEEE Trans. on Systems, Man, and Cybernetic-Part B.1996, 26(1):29-41
  • 加载中
计量
  • 文章访问数:  3648
  • HTML全文浏览量:  96
  • PDF下载量:  1248
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-08-16
  • 修回日期:  2005-12-26
  • 刊出日期:  2007-03-19

目录

    /

    返回文章
    返回