基于各向异性核函数的均值漂移跟踪算法
doi: 10.3724/SP.J.1146.2005.00928
Object Tracking by Anisotropic Kernel Mean Shift
-
摘要: 均值漂移算法是一种将迭代轨迹滑向局部邻域内均值的迭代算法,已应用于目标跟踪领域。传统的均值漂移算法通常采用各向同性核函数进行跟踪,但视频序列中的跟踪目标的结构随时间而变化,尤其当目标结构快速变化时,基于各向同性核函数的均值漂移跟踪算法常常会导致目标的丢失。该文采用各向异性核函数均值漂移算法实现目标跟踪,由于该核函数的形状、大小、方向能自适应于目标局部结构的变化,保证了跟踪效果的稳定性和鲁棒性。实验结果证明该算法是有效的。Abstract: Mean shift, an iterative procedure that shifts each data point to the average of data points in its neighborhood, has been applied to object tracking. However, with the changing structure of object in video sequences, traditional mean shift tracker by isotropic kernel often loses the object, especially when object structure varies fast. This paper implements object tracking with anisotropic kernel mean shift in which the shape, scale, and orientation of the kernels adapt to the changing object structure. The algorithm ensures tracking robust and real-time. Experimental results show it is effective.
-
[1] Bretzner L and Lindeberg T. Feature tracking with automatic selection of spatial scales[J].Computer Vision and Image Understanding.1998, 71(3):385-392 [2] Cheng Yizong. Mean shift, mode seeking, and clustering[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1995, 17(8):790-799 [3] Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577 [4] Zivkovic Z and Krose B. An EM-like algorithm for color- histogram- based object tracking[C][J].Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA.2004, vol.1:798-803 [5] Chen H F and Meer P. Robust computer vision through kernel density estimation[C]. Computer Vision - ECCV 2002. 7th European Conference on Computer Vision Proceedings, Copenhagen, Denmark, Part I (Lecture Notes in Computer Science Vol.2350), 2002: 236-250. [6] Wang J, Bo T, Xu Y Q, and Cohen M. Image and video segmentation by anisotropic kernel mean shift[C]. Computer Vision - ECCV 2004. 8th European Conference on Computer Vision, Proceedings (Lecture Notes in Comput. Sci.Vol.3022), Prague, Czech Republic, 2004, Vol.2: 2638-249. [7] 边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 2000: 180-181. [8] Bradski G R. Computer vision face tracking as a component of a perceptual user interface[C]. Proceedings Fourth IEEE Workshop Applications of Computer Vision, Berlin, Germany, Oct. 1998: 214-219.
计量
- 文章访问数: 3950
- HTML全文浏览量: 97
- PDF下载量: 1087
- 被引次数: 0