高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于各向异性核函数的均值漂移跟踪算法

齐苏敏 黄贤武 伊怀峰

齐苏敏, 黄贤武, 伊怀峰. 基于各向异性核函数的均值漂移跟踪算法[J]. 电子与信息学报, 2007, 29(3): 686-689. doi: 10.3724/SP.J.1146.2005.00928
引用本文: 齐苏敏, 黄贤武, 伊怀峰. 基于各向异性核函数的均值漂移跟踪算法[J]. 电子与信息学报, 2007, 29(3): 686-689. doi: 10.3724/SP.J.1146.2005.00928
Qi Su-min, Huang Xian-wu, Yi Huai-feng. Object Tracking by Anisotropic Kernel Mean Shift[J]. Journal of Electronics & Information Technology, 2007, 29(3): 686-689. doi: 10.3724/SP.J.1146.2005.00928
Citation: Qi Su-min, Huang Xian-wu, Yi Huai-feng. Object Tracking by Anisotropic Kernel Mean Shift[J]. Journal of Electronics & Information Technology, 2007, 29(3): 686-689. doi: 10.3724/SP.J.1146.2005.00928

基于各向异性核函数的均值漂移跟踪算法

doi: 10.3724/SP.J.1146.2005.00928
基金项目: 

国家自然科学基金(30300088)资助课题

Object Tracking by Anisotropic Kernel Mean Shift

  • 摘要: 均值漂移算法是一种将迭代轨迹滑向局部邻域内均值的迭代算法,已应用于目标跟踪领域。传统的均值漂移算法通常采用各向同性核函数进行跟踪,但视频序列中的跟踪目标的结构随时间而变化,尤其当目标结构快速变化时,基于各向同性核函数的均值漂移跟踪算法常常会导致目标的丢失。该文采用各向异性核函数均值漂移算法实现目标跟踪,由于该核函数的形状、大小、方向能自适应于目标局部结构的变化,保证了跟踪效果的稳定性和鲁棒性。实验结果证明该算法是有效的。
  • [1] Bretzner L and Lindeberg T. Feature tracking with automatic selection of spatial scales[J].Computer Vision and Image Understanding.1998, 71(3):385-392 [2] Cheng Yizong. Mean shift, mode seeking, and clustering[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1995, 17(8):790-799 [3] Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577 [4] Zivkovic Z and Krose B. An EM-like algorithm for color- histogram- based object tracking[C][J].Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA.2004, vol.1:798-803 [5] Chen H F and Meer P. Robust computer vision through kernel density estimation[C]. Computer Vision - ECCV 2002. 7th European Conference on Computer Vision Proceedings, Copenhagen, Denmark, Part I (Lecture Notes in Computer Science Vol.2350), 2002: 236-250. [6] Wang J, Bo T, Xu Y Q, and Cohen M. Image and video segmentation by anisotropic kernel mean shift[C]. Computer Vision - ECCV 2004. 8th European Conference on Computer Vision, Proceedings (Lecture Notes in Comput. Sci.Vol.3022), Prague, Czech Republic, 2004, Vol.2: 2638-249. [7] 边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 2000: 180-181. [8] Bradski G R. Computer vision face tracking as a component of a perceptual user interface[C]. Proceedings Fourth IEEE Workshop Applications of Computer Vision, Berlin, Germany, Oct. 1998: 214-219.
  • 加载中
计量
  • 文章访问数:  3950
  • HTML全文浏览量:  97
  • PDF下载量:  1087
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-07-28
  • 修回日期:  2005-12-29
  • 刊出日期:  2007-03-19

目录

    /

    返回文章
    返回