高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

区域信息驱动的多目标进化半监督模糊聚类图像分割算法

赵凤 张咪咪 刘汉强

赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106-1113. doi: 10.12000/JRIT180605
引用本文: 赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106-1113. doi: 10.12000/JRIT180605
Feng ZHAO, Mimi ZHANG, Hanqiang LIU. Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1106-1113. doi: 10.12000/JRIT180605
Citation: Feng ZHAO, Mimi ZHANG, Hanqiang LIU. Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1106-1113. doi: 10.12000/JRIT180605

区域信息驱动的多目标进化半监督模糊聚类图像分割算法

doi: 10.12000/JRIT180605
基金项目: 国家自然科学基金(61571361, 61102095, 61671377),西安邮电大学西邮新星团队(xyt2016-01)
详细信息
    作者简介:

    赵凤:女,1980 年生,教授,研究方向为计算智能与图像处理

    张咪咪:女,1992年生,硕士生,研究方向为图像处理

    刘汉强:男,1981年生,副教授,研究方向为模式识别与图像处理

    通讯作者:

    赵凤 fzhao.xupt@gmail.com

  • 中图分类号: TP391

Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information

Funds: The National Natural Science Foundation of China (61571361, 61102095, 61671377), New Star Team of Xi’an University of Posts & Telecommunications (xyt2016-01)
  • 摘要:

    现有的多目标进化聚类算法应用于图像分割时,往往是在图像像素层面上进行聚类,运行时间过长,而且忽略了图像区域信息使得图像分割效果不太理想。为了提高多目标进化聚类算法的分割效果和时间效率,该文将图像区域信息与部分监督信息引入多目标进化聚类,提出图像区域信息驱动的多目标进化半监督模糊聚类图像分割算法。该算法首先利用超像素策略获得图像的区域信息,然后结合部分监督信息,设计融合区域信息和监督信息的适应度函数,接着通过多目标进化策略对多个适应度函数进行优化得到最优解集。最后构造融合区域信息与监督信息的最优解评价指标,实现从最优解集中选取一个最优解。实验结果表明:与已有多目标进化聚类算法相比,该算法不但分割效果有所提升,而且运行效率得以提高。

  • 图  1  准确率随$\alpha $变化折线图

    图  2  #135069分割结果图

    图  3  #124084分割结果图

    表  1  各算法聚类准确率对比

    图像FCMSSFCMSSFC-SCMOVGA本文算法
    #30960.98590.98600.98650.53880.9931
    #1350690.73680.99260.99240.33010.9925
    #1180350.93420.93420.93370.93670.9523
    #1240840.74150.74180.84650.86780.9457
    #860160.83940.83950.85680.61900.9811
    #1610620.88460.88470.89880.57110.9830
    #2600580.78930.78980.83010.37300.9904
    #80680.95170.95180.95180.71120.9858
    #1130440.83810.83840.83950.26640.9330
    #120030.77370.77350.80790.44210.8919
    #2960590.73970.73960.74000.63640.9284
    #2380110.80930.95650.95650.95660.9605
    #1010270.88390.88400.88500.56890.9024
    #280750.44790.44560.56660.58730.9374
    #240630.96750.96750.96960.96010.9737
    #2530360.61930.61950.69210.64430.9448
    #420440.75240.75260.75720.70550.8595
    #2990910.69620.69640.72200.33600.9564
    #1130160.81640.81420.88430.72030.9426
    #1470910.93160.93170.93140.77810.9041
    下载: 导出CSV
  • 章毓晋. 图象分割[M]. 北京: 科学出版社, 2001: 1–5.

    ZHANG Yujin. Image Segmentation[M]. Beijing: Science Press, 2001: 1–5.
    申铉京, 刘翔, 陈海鹏. 基于多阈值Otsu准则的阈值分割快速计算[J]. 电子与信息学报, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248

    SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics &Information Technology, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248
    ZANG Wenke, ZHANG Weining, ZHANG Wenqian, et al. A kernel-based intuitionistic fuzzy c-means clustering using a DNA genetic algorithm for magnetic resonance image segmentation[J]. Entropy, 2017, 19(11): 578. doi: 10.3390/e19110578
    ZHANG Yingchun, GUO He, CHEN Feng, et al. Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation[J]. Neurocomputing, 2017, 249: 1–18. doi: 10.1016/j.neucom.2017.01.044
    BEZDEK J C, EHRLICH R, and FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191–203.
    CHEN Shengguo, SUN Zhengxing, ZHOU Jie, et al. Semi-supervised image segmentation combining SSFCM and random walks[C]. Proceedings of the 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 2012: 185–190.
    MENG Meng, WEI Jia, WANG Jiabing, et al. Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(3): 793–805. doi: 10.1007/s13042-015-0380-3
    JOHNSON D M, XIONG Caiming, and CORSO J J. Semi-supervised nonlinear distance metric learning via forests of max-margin cluster hierarchies[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(4): 1035–1046. doi: 10.1109/TKDE.2015.2507130
    YASUNORI E, YUKIHIRO H, MAKITO Y, et al. On semi-supervised fuzzy c-means clustering[C]. Proceedings of IEEE International Conference on Fuzzy Systems, Jeju Island, South Korea, 2009: 1119–1124.
    YIN Xuesong, SHU Ting, and HUANG Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization[J]. Knowledge-Based Systems, 2012, 35: 304–311. doi: 10.1016/j.knosys.2012.05.016
    SON L H and TUAN T M. A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation[J]. Expert Systems with Applications, 2016, 46: 380–393. doi: 10.1016/j.eswa.2015.11.001
    SON L H and TUAN T M. Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints[J]. Engineering Applications of Artificial Intelligence, 2017, 59: 186–195. doi: 10.1016/j.engappai.2017.01.003
    赵凤, 刘汉强, 范九伦. 基于互补空间信息的多目标进化聚类图像分割[J]. 电子与信息学报, 2015, 37(3): 672–678. doi: 10.11999/JEIT140371

    ZHAO Feng, LIU Hanqiang, and FAN Jiulun. Multi-objective evolutionary clustering with complementary spatial information for image segmentation[J]. Journal of Electronics &Information Technology, 2015, 37(3): 672–678. doi: 10.11999/JEIT140371
    ZHAO Feng, LIU Hanqiang, FAN Jiulun, et al. Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation[J]. Neurocomputing, 2018, 312: 296–309. doi: 10.1016/j.neucom.2018.05.116
    HANDL J and KNOWLES J. An evolutionary approach to multiobjective clustering[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 56–76. doi: 10.1109/TEVC.2006.877146
    MUKHOPADHYAY A and MAULIK U. A multiobjective approach to MR brain image segmentation[J]. Applied Soft Computing, 2011, 11(1): 872–880. doi: 10.1016/j.asoc.2010.01.007
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017
    REN Xiaofeng and MALIK J. Learning a classification model for segmentation[C]. Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 10–17.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    WANG Jianzhong, KONG Jun, LU Yinghua, et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints[J]. Computerized Medical Imaging and Graphics, 2008, 32(8): 685–698. doi: 10.1016/j.compmedimag.2008.08.004
    湛西羊, 李良群, 张富有. 融入局部信息的直觉模糊核聚类图像分割算法[J]. 信号处理, 2017, 33(3): 397–405. doi: 10.16798/j.issn.1003-0530.2017.03.021

    ZHAN Xiyang, LI Liangqun, and ZHANG Fuyou. An intuitionistic kernel-based fuzzy c-means clustering algorithm with local information for image segmentation[J]. Journal of Signal Processing, 2017, 33(3): 397–405. doi: 10.16798/j.issn.1003-0530.2017.03.021
    HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66–72. doi: 10.1038/scientificamerican0792-66
    MAULIK U and BANDYOPADHYAY S. Performance evaluation of some clustering algorithms and validity indices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1650–1654. doi: 10.1109/TPAMI.2002.1114856
    赵凤. 基于模糊聚类的图像分割[M]. 西安: 西安电子科技大学出版社, 2015: 74–80.

    ZHAO Feng. Fuzzy Clustering for Image Segmentation[M]. Xi’an: Xidian University Press, 2015: 74–80.
    ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161
    WU Mingrui and SCHÖLKOPF B. A local learning approach for clustering[C]. Proceedings of the 19th International Conference on Neural Information Processing Systems, Canada, 2006: 1529–1536.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1833
  • HTML全文浏览量:  819
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-12-14
  • 网络出版日期:  2019-01-18
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回