高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K4,4,p的点可区别的IE-全染色(p≥1008)

陈祥恩 马静静

陈祥恩, 马静静. K4,4,p的点可区别的IE-全染色(p≥1008)[J]. 电子与信息学报, 2020, 42(12): 3068-3073. doi: 10.11999/SEIT190832
引用本文: 陈祥恩, 马静静. K4,4,p的点可区别的IE-全染色(p≥1008)[J]. 电子与信息学报, 2020, 42(12): 3068-3073. doi: 10.11999/SEIT190832
Xiang’en CHEN, Jingjing MA. Vertex-distinguishing IE-total Coloring of K4,4,p(p≥1008)[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3068-3073. doi: 10.11999/SEIT190832
Citation: Xiang’en CHEN, Jingjing MA. Vertex-distinguishing IE-total Coloring of K4,4,p(p≥1008)[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3068-3073. doi: 10.11999/SEIT190832

K4,4,p的点可区别的IE-全染色(p≥1008)

doi: 10.11999/SEIT190832
基金项目: 国家自然科学基金(11761064, 61163037)
详细信息
    作者简介:

    陈祥恩:男,1965年生,教授,主要研究方向为图论及其应用

    马静静:女,1997年生,硕士生,研究方向为图论及其应用

    通讯作者:

    陈祥恩 chenxe@nwnu.edu.cn

  • 中图分类号: O157.5

Vertex-distinguishing IE-total Coloring of K4,4,p(p≥1008)

Funds: The National Natural Science Foundation of China (11761064, 61163037)
  • 摘要: 该文利用色集事先分配法、构造染色法、反证法探讨了完全三部图K4,4,p (p≥1008)的点可区别IE-全染色问题,确定了K4,4,p (p≥1008)的点可区别IE-全染色数。
  • HARARY F and PLANTHOLT M. The Point-Distinguishing Chromatic Index[M]. HARARY F and MAYBEE J S. Graphs and Application. New York: Wiley, 1985: 147–162.
    HORŇÁK M and SOTÁK R. The fifth jump of the point-distinguishing chromatic index of K n, n[J]. ARS Combinatoria-Waterloo then Winnipeg, 1996, 42: 233–242.
    HORŇÁK M and SOTÁK R. Localization of jumps of the point-distinguishing chromatic index of K n, n[J]. Discussiones Mathematicae Graph Theory, 1997, 17(2): 243–251. doi: 10.7151/dmgt.1051
    HORŇÁK M and ZAGALIA SALVI N. On the point-distinguishing chromatic index of K m, n[J]. ARS Combinatoria, 2006, 80: 75–85.
    ZAGAGLIA SALVI N. On the value of the point-distinguishing chromatic index of K n, n[J]. ARS Combinatoria, 1990, 29B: 235–244.
    CHEN Xiang’en. Point-distinguishing chromatic index of the union of paths[J]. Czechoslovak Mathematical Journal, 2014, 64(3): 629–640. doi: 10.1007/s10587-014-0123-8
    CHEN Xiang’en, GAO Yuping, and YAO Bing. Vertex-distinguishing IE-total colorings of complete bipartite graphs K m, n(m<n)[J]. Discussiones Mathematicae Graph Theory, 2013, 33(2): 289–306. doi: 10.7151/dmgt.1659
    LIU Chanjuan and ZHU Enqiang. General vertex-distinguishing total coloring of graphs[J]. Journal of Applied Mathematics, 2014, 2014: 849748.
    许进. 极大平面图的结构与着色理论(1)色多项式递推公式与四色猜想[J]. 电子与信息学报, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072

    XU Jin. Theory on the structure and coloring of maximal planar graphs (1)recursion formula of chromatic polynomial and four-color conjecture[J]. Journal of Electronics &Information Technology, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072
    许进. 极大平面图的结构与着色理论(2)多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271–1327. doi: 10.11999/JEIT160224

    XU Jin. Theory on structure and coloring of maximal planar graphs (2) Domino configurations and extending-contracting operations[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1271–1327. doi: 10.11999/JEIT160224
    许进. 极大平面图的结构与着色理论(3)纯树着色与唯一4-色极大平面图猜想[J]. 电子与信息学报, 2016, 38(6): 1328–1363. doi: 10.11999/JEIT160409

    XU Jin. Theory on structure and coloring of maximal planar graphs (3) purely tree-colorable and uniquely 4-colorable maximal planar graph conjecture[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1328–1363. doi: 10.11999/JEIT160409
    许进. 极大平面图的结构与着色理论(4)σ-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483

    XU Jin. Theory on structure and coloring of maximal planar graphs (4)σ-operations and Kempe equivalent classes[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483
    XU Jin, LI Zepeng, and ZHU Enqiang. On purely tree-colorable planar graphs[J]. Information Processing Letters, 2016, 116(8): 532–536. doi: 10.1016/j.ipl.2016.03.011
    许进, 李泽鹏, 朱恩强. 极大平面图理论研究进展[J]. 计算机学报, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680

    XU Jin, LI Zepeng, and ZHU Enqiang. Research progress on the theory of maximal planar graphs[J]. Chinese Journal of Computers, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680
    陈祥恩, 李婷. (k,l)-递归极大平面图的结构[J]. 电子与信息学报, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021

    CHEN Xiang’en and LI Ting. The structure of (k,l)-recursive maximal planar graph[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021
    刘小青, 许进. 4-正则图着色的Kempe等价性[J]. 电子与信息学报, 2017, 39(5): 1233–1244. doi: 10.11999/JEIT160716

    LIU Xiaoqing and XU Jin. Kempe equivalence of colorings of 4-regular graphs[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1233–1244. doi: 10.11999/JEIT160716
    LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. Size of edge-critical uniquely 3-colorable planar graphs[J]. Discrete Mathematics, 2016, 339(4): 1242–1250. doi: 10.1016/j.disc.2015.11.009
    LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. A note on uniquely 3-colourable planar graphs[J]. International Journal of Computer Mathematics, 2017, 94(5): 1028–1035. doi: 10.1080/00207160.2016.1167196
    ZHU Enqiang, LI Zepeng, SHAO Zehui, et al. Acyclically 4-colorable triangulations[J]. Information Processing Letters, 2016, 116(6): 401–408. doi: 10.1016/j.ipl.2015.12.005
  • 加载中
计量
  • 文章访问数:  1977
  • HTML全文浏览量:  482
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2020-04-27
  • 网络出版日期:  2020-07-24
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回