HARARY F and PLANTHOLT M. The Point-Distinguishing Chromatic Index[M]. HARARY F and MAYBEE J S. Graphs and Application. New York: Wiley, 1985: 147–162.
|
HORŇÁK M and SOTÁK R. The fifth jump of the point-distinguishing chromatic index of K n, n[J]. ARS Combinatoria-Waterloo then Winnipeg, 1996, 42: 233–242.
|
HORŇÁK M and SOTÁK R. Localization of jumps of the point-distinguishing chromatic index of K n, n[J]. Discussiones Mathematicae Graph Theory, 1997, 17(2): 243–251. doi: 10.7151/dmgt.1051
|
HORŇÁK M and ZAGALIA SALVI N. On the point-distinguishing chromatic index of K m, n[J]. ARS Combinatoria, 2006, 80: 75–85.
|
ZAGAGLIA SALVI N. On the value of the point-distinguishing chromatic index of K n, n[J]. ARS Combinatoria, 1990, 29B: 235–244.
|
CHEN Xiang’en. Point-distinguishing chromatic index of the union of paths[J]. Czechoslovak Mathematical Journal, 2014, 64(3): 629–640. doi: 10.1007/s10587-014-0123-8
|
CHEN Xiang’en, GAO Yuping, and YAO Bing. Vertex-distinguishing IE-total colorings of complete bipartite graphs K m, n(m<n)[J]. Discussiones Mathematicae Graph Theory, 2013, 33(2): 289–306. doi: 10.7151/dmgt.1659
|
LIU Chanjuan and ZHU Enqiang. General vertex-distinguishing total coloring of graphs[J]. Journal of Applied Mathematics, 2014, 2014: 849748.
|
许进. 极大平面图的结构与着色理论(1)色多项式递推公式与四色猜想[J]. 电子与信息学报, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072XU Jin. Theory on the structure and coloring of maximal planar graphs (1)recursion formula of chromatic polynomial and four-color conjecture[J]. Journal of Electronics &Information Technology, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072
|
许进. 极大平面图的结构与着色理论(2)多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271–1327. doi: 10.11999/JEIT160224XU Jin. Theory on structure and coloring of maximal planar graphs (2) Domino configurations and extending-contracting operations[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1271–1327. doi: 10.11999/JEIT160224
|
许进. 极大平面图的结构与着色理论(3)纯树着色与唯一4-色极大平面图猜想[J]. 电子与信息学报, 2016, 38(6): 1328–1363. doi: 10.11999/JEIT160409XU Jin. Theory on structure and coloring of maximal planar graphs (3) purely tree-colorable and uniquely 4-colorable maximal planar graph conjecture[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1328–1363. doi: 10.11999/JEIT160409
|
许进. 极大平面图的结构与着色理论(4)σ-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483XU Jin. Theory on structure and coloring of maximal planar graphs (4)σ-operations and Kempe equivalent classes[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483
|
XU Jin, LI Zepeng, and ZHU Enqiang. On purely tree-colorable planar graphs[J]. Information Processing Letters, 2016, 116(8): 532–536. doi: 10.1016/j.ipl.2016.03.011
|
许进, 李泽鹏, 朱恩强. 极大平面图理论研究进展[J]. 计算机学报, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680XU Jin, LI Zepeng, and ZHU Enqiang. Research progress on the theory of maximal planar graphs[J]. Chinese Journal of Computers, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680
|
陈祥恩, 李婷. (k,l)-递归极大平面图的结构[J]. 电子与信息学报, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021CHEN Xiang’en and LI Ting. The structure of (k,l)-recursive maximal planar graph[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021
|
刘小青, 许进. 4-正则图着色的Kempe等价性[J]. 电子与信息学报, 2017, 39(5): 1233–1244. doi: 10.11999/JEIT160716LIU Xiaoqing and XU Jin. Kempe equivalence of colorings of 4-regular graphs[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1233–1244. doi: 10.11999/JEIT160716
|
LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. Size of edge-critical uniquely 3-colorable planar graphs[J]. Discrete Mathematics, 2016, 339(4): 1242–1250. doi: 10.1016/j.disc.2015.11.009
|
LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. A note on uniquely 3-colourable planar graphs[J]. International Journal of Computer Mathematics, 2017, 94(5): 1028–1035. doi: 10.1080/00207160.2016.1167196
|
ZHU Enqiang, LI Zepeng, SHAO Zehui, et al. Acyclically 4-colorable triangulations[J]. Information Processing Letters, 2016, 116(6): 401–408. doi: 10.1016/j.ipl.2015.12.005
|