高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取

孙瑾铃 张伟涛 楼顺天

孙瑾铃, 张伟涛, 楼顺天. 基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取[J]. 电子与信息学报, 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722
引用本文: 孙瑾铃, 张伟涛, 楼顺天. 基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取[J]. 电子与信息学报, 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722
Jinling SUN, Weitao ZHANG, Shuntian LOU. Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722
Citation: Jinling SUN, Weitao ZHANG, Shuntian LOU. Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722

基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取

doi: 10.11999/JEJT190722
基金项目: 国家自然科学基金(61571339),陕西省创新人才推进计划-青年科技新星项目(2018KJXX-019)
详细信息
    作者简介:

    孙瑾铃:女,1995年生,博士生,研究方向为盲信号处理

    张伟涛:男,1983年生,副教授,硕士生导师,研究方向为盲信号处理

    楼顺天:男,1962年生,教授,博士生导师,研究方向为神经网络信息处理与应用、模糊信息处理与应用、盲信号处理、现代信号智能处理、智能控制技术

    通讯作者:

    张伟涛 zhwt-work@foxmail.com

  • 中图分类号: TN911.7

Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence

Funds: The National Natural Science Foundation of China (61571339), The Innovative Talents Promotion Program of Shaanxi Province (2018KJXX-019)
  • 摘要: 针对复杂工况下滚动轴承故障信号盲提取问题,该文提出一种独立分量分析(ICA)中非线性函数自适应选择方法,解决了等变化自适应源分离算法(EASI)在多类振动源共存的情况下无法分离轴承故障信号的问题。此外,为了解决在线盲分离算法稳态误差与收敛速率的平衡问题,提出基于模糊逻辑的自适应迭代步长选择方法,极大地提高了学习算法的收敛速度,且稳态误差更小。轴承故障数据的盲提取仿真结果验证了算法的性能。
  • 图  1  模糊系统的输入与输出

    图  2  源信号波形及其幅值分布

    图  3  观测信号及分离信号包络谱

    图  4  算法的性能比较

    表  1  模糊推理规则

    $\mu {{ = S1} }$$\mu {{ = S2} }$$\mu {{ = M} }$$\mu {{ = B} }$
    ${D_i}{{ = S1} }$${{S1} }$${{S1} }$${{S2} }$${{M2} }$
    ${D_i}{{ = S2} }$${{S1} }$${{S2} }$${{M1} }$${{M2} }$
    ${D_i}{{ = M} }$${{M1} }$${{M1} }$${{M2} }$${{B1} }$
    ${D_i}{{ = B} }$${{M2} }$${{M2} }$${{B1} }$${{B2} }$
    下载: 导出CSV

    表  2  算法的成功率比较

    算法名称成功率(%)
    EASI, $g(x) = {x^3}$0
    EASI, $g(x) = \tanh (x)$12
    本文算法,使用固定步长88
    本文算法,使用模糊逻辑步长97
    下载: 导出CSV

    表  3  算法的性能比较

    算法ISR
    SOBI0.069
    FastICA, $g( \cdot ) = \tanh ( \cdot )$0.140
    FastICA, $g( \cdot ) = {( \cdot )^3}$0.170
    FastICA, $g( \cdot ) = ( \cdot )\exp ( - {( \cdot )^2}/2)$0.160
    本文算法,使用模糊逻辑步长0.110
    下载: 导出CSV
  • 郝如江, 卢文秀, 褚福磊. 声发射检测技术用于滚动轴承故障诊断的研究综述[J]. 振动与冲击, 2008, 27(3): 75–79. doi: 10.3969/j.issn.1000-3835.2008.03.019

    HAO Rujiang, LU Wenxiu, and CHU Fulei. Review of diagnosis of rolling element bearings defaults by means of acoustic emission technique[J]. Journal of Vibration and Shock, 2008, 27(3): 75–79. doi: 10.3969/j.issn.1000-3835.2008.03.019
    HYVÄRINEN A, KARHUNEN J, and OJA E. Independent Component Analysis[M]. New York: Wiley, 2001: 9–11. doi: 10.1007/978-0-387-73003-5_305.
    李扬, 张伟涛, 楼顺天. 基于联合对角化的声信号深度卷积混合盲分离方法[J]. 电子与信息学报, 2019, 41(12): 2951–2956. doi: 10.11999/JEIT190067

    LI Yang, ZHANG Weitao, and LOU Shuntian. Deep convolution blind separation of acoustic signals based on joint diagonalization[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2951–2956. doi: 10.11999/JEIT190067
    陈雷, 韩大伟, 郭艳菊, 等. 基于回溯搜索优化的卷积混合语音盲分离[J]. 计算机工程与应用, 2017, 53(15): 137–143.

    CHEN Lei, HAN Dawei, GUO Yanju, et al. Speech convolutive blind separation algorithm based on backtracking search optimization[J]. Computer Engineering and Applications, 2017, 53(15): 137–143.
    龚晓峰, 毛蕾, 林秋华, 等. 基于四阶累积量张量联合对角化的多数据集联合盲源分离[J]. 电子与信息学报, 2019, 41(3): 509–515. doi: 10.11999/JEIT180414

    GONG Xiaofeng, MAO Lei, LIN Qiuhua, et al. Joint blind source separation based on joint diagonalization of fourth-order cumulant tensors[J]. Journal of Electronics &Information Technology, 2019, 41(3): 509–515. doi: 10.11999/JEIT180414
    刘嘉辉, 董辛旻, 李剑飞. 基于全矢谱时间固有尺度分解和独立分量分析盲源分离降噪的滚动轴承故障特征提取[J]. 中国机械工程, 2018, 29(8): 943–948. doi: 10.3969/j.issn.1004-132X.2018.08.009

    LIU Jiahui, DONG Xinmin, and LI Jianfei. Fault feature extraction of rolling bearings based on noises reduced by full vector spectrum ITD-ICA blind source separation[J]. China Mechanical Engineering, 2018, 29(8): 943–948. doi: 10.3969/j.issn.1004-132X.2018.08.009
    HE Jun, CHEN Yong, ZHANG Qinghua, et al. Blind source separation method for bearing vibration signals[J]. IEEE Access, 2018, 6: 658–664. doi: 10.1109/ACCESS.2017.2773665
    HUANG Xiangdong, JIN Xukang, and FU Haipeng. Short-sampled blind source separation of rotating machinery signals based on spectrum correction[J]. Shock and Vibration, 2016, 2016: 9564938. doi: 10.1155/2016/9564938
    胡纯直. 风机齿轮箱多故障诊断问题研究[D]. [硕士论文], 浙江大学, 2017.

    HU Chunzhi. The research on multi-fault diagnosis of wind turbine gearbox[D]. [Master dissertation], Zhejiang University, 2017.
    陈恩利, 张玺, 申永军, 等. 基于SVD降噪和盲信号分离的滚动轴承故障诊断[J]. 振动与冲击, 2012, 31(23): 185–190. doi: 10.3969/j.issn.1000-3835.2012.23.034

    CHEN Enli, ZHANG Xi, SHEN Yongjun, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of Vibration and Shock, 2012, 31(23): 185–190. doi: 10.3969/j.issn.1000-3835.2012.23.034
    许同乐, 王营博, 郑店坤, 等. 基于LMD-ICA降噪的滚动轴承故障特征提取方法研究[J]. 北京邮电大学学报, 2017, 40(1): 111–116.

    XU Tongle, WANG Yingbo, ZHENG Diankun, et al. Research of the rolling bearing fault signal feature extraction Method based on the LMD-ICA noise reduction[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1): 111–116.
    席剑辉, 崔健驰, 蒋丽英. 基于JADE-ICA的滚动轴承多故障信号盲源分离[J]. 振动与冲击, 2017, 36(5): 231–237. doi: 10.13465/j.cnki.jvs.2017.05.037

    XI Jianhui, CUI Jianchi, and JIANG Liying. JADE-ICA-based blind source separation of multi-fault signals of rolling bearings[J]. Journal of Vibration and Shock, 2017, 36(5): 231–237. doi: 10.13465/j.cnki.jvs.2017.05.037
    BELL A J and SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129–1159. doi: 10.1162/neco.1995.7.6.1129
    CARDOSO J F and LAHELD B H. Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017–3030. doi: 10.1109/78.553476
    ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677–689. doi: 10.1109/TNNLS.2013.2280285
    KARHUNEN J, PAJUNEN P, and OJA E. The nonlinear PCA criterion in blind source separation: Relations with other approaches[J]. Neurocomputing, 1998, 22(1/3): 5–20. doi: 10.1016/s0925-2312(98)00046-0
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  2289
  • HTML全文浏览量:  441
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-04-29
  • 网络出版日期:  2020-05-13
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回