高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基紧凑型偏振分束旋转器的逆向设计

惠战强 张兴龙 韩冬冬 李田甜 巩稼民

惠战强, 张兴龙, 韩冬冬, 李田甜, 巩稼民. 硅基紧凑型偏振分束旋转器的逆向设计[J]. 电子与信息学报. doi: 10.11999/JEIT250858
引用本文: 惠战强, 张兴龙, 韩冬冬, 李田甜, 巩稼民. 硅基紧凑型偏振分束旋转器的逆向设计[J]. 电子与信息学报. doi: 10.11999/JEIT250858
HUI Zhanqiang, ZHANG Xinglong, HAN dongdong, LI Tiantian, GONG Jiamin. Inverse Design of a Silicon-Based Compact Polarization Splitter-Rotator[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250858
Citation: HUI Zhanqiang, ZHANG Xinglong, HAN dongdong, LI Tiantian, GONG Jiamin. Inverse Design of a Silicon-Based Compact Polarization Splitter-Rotator[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250858

硅基紧凑型偏振分束旋转器的逆向设计

doi: 10.11999/JEIT250858 cstr: 32379.14.JEIT250858
基金项目: 国家重点研发计划项目(2022YFB2903201),陕西省创新能力支撑计划项目(2022PT15)
详细信息
    作者简介:

    惠战强:男,教授,研究方向为光纤通信技术、全光信号处理、集成光电子器件与光芯片

    张兴龙:男,硕士生,研究方向为集成光子器件和光纤通信仿真设计

    通讯作者:

    惠战强 zhanqianghui@xupt.edu.cn

  • 中图分类号: TN29

Inverse Design of a Silicon-Based Compact Polarization Splitter-Rotator

Funds: National Key Research and Development Program Project (2022YFB2903201), Shaanxi Provincial Innovation Capacity Support Program Project (2022PT15)
  • 摘要: 片上偏振分束旋转器(Polarization Splitter-Rotator, PSR)作为调控光波偏振态的核心集成光子器件之一,其微型化设计是实现高密度光子集成电路(Photonic Integrated Circuit, PIC)的关键。本文基于绝缘体上硅平台(Silicon-on-Insulator, SOI),采用逆向法设计了一种超紧凑偏振分束旋转器,通过将动量优化算法(Momentum-based Optimization)与伴随法(Adjoint Method)相结合,提高了设计效率。并且,进一步通过空气孔融合将孔半径控制在50 nm至250 nm之间,降低了器件的制造难度。数值分析结果表明:该器件在1520-1575 nm波段内实现了低插入损耗(TM0<1 dB,TE0<0.68 dB),低串扰(TM0<-23 dB,TE0<–25.2 dB)和高偏振消光比(TM0>17 dB,TE0>28.5 dB)。器件尺寸仅为2.5 μm×5 μm。工艺容差分析表明,在蚀刻深度偏移±9 nm,蚀刻半径偏移±5 nm时,在1520-1540nm带宽范围内,性能没有明显劣化,具有良好的制造鲁棒性。
  • 图  1  设计的PSR示意图

    图  2  设计前结构初始状态确定图

    图  3  不同优化算法的性能比较

    图  4  优化流程图

    图  5  相对介电常数介于3-6.55的空气孔优化示意图

    图  6  FOM值随大空气孔蚀刻半径,蚀刻深度的变化图

    图  7  TE0,TM0模式传输图以及输入输出端口电场分布图

    图  8  TE0,TM0模式分别输入时的性能随波长变化图

    图  9  TE0,TM0模式在蚀刻深度±9 nm和蚀刻半径±5 nm公差范围内的性能参数

    表  1  蚀刻深度公差性能表

    Mode Tolerance
    (nm)
    Bandwidth
    (nm)
    IL
    (dB)
    CT
    (dB)
    PER
    (dB)

    TE0
    +9 15201575 <0.8 <–25.4 >26.3
    –9 15201575 <0.8 <–26 >29.2

    TM0
    +9 15201575 <1.8 <–22.4 >11
    –9 15201575 <2 <–27.1 >15.6
    下载: 导出CSV

    表  2  蚀刻半径公差性能表

    Mode Tolerance
    (nm)
    Bandwidth
    (nm)
    IL
    (dB)
    CT
    (dB)
    PER
    (dB)

    TE0
    +5 15201575 <1 <–23.9 >26
    –5 15201575 <0.9 <–28.9 >25.2

    TM0
    +5 15201575 <2.1 <–27.2 >11.6
    –5 15201575 <1.5 <–22.1 >17.2
    下载: 导出CSV

    表  3  与其它片上PSR的比较

    Reference
    Length
    (μm)
    ILTM
    (dB)
    CTTM
    (dB)
    PERTM
    (dB)
    Bandwidth
    (nm)
    Band
    [12] -Sim 24 <1 >15 150 C
    [20] -Exp 405 <2 >11 160 C
    [31] -Sim 7.95 <1 <-26 >15 40 C
    [43] -Exp 17 <1 <-20 50 O
    [44] -Sim 6 <3 <-20 73 C
    [45] -Sim 120 <0.5 <-50 200 C
    [46] -Sim 86 <2.8 <-34 200 O
    [47] -Exp 170 <0.8 <-18 60 C
    This work 5 <1 <-23 >17 55 C
    下载: 导出CSV
  • [1] WANG Jian and LONG Yun. On-chip silicon photonic signaling and processing: A review[J]. Science Bulletin, 2018, 63(19): 1267–1310. doi: 10.1016/j.scib.2018.05.038.
    [2] CONRADI H, DE FELIPE D, KLEINERT M, et al. Hybrid integration of a polarization independent optical circulator[C]. Proceedings Volume 11283, Integrated Optics: Devices, Materials, and Technologies XXIV, San Francisco, United States, 2020: 39–45. doi: 10.1117/12.2545592.
    [3] GAO Linfei, HUO Yijie, HARRIS J S, et al. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide[J]. IEEE Photonics Technology Letters, 2013, 25(21): 2081–2084. doi: 10.1109/LPT.2013.2281425.
    [4] ZHAO Yingxuan, QIU Chao, WU Aimin, et al. Broadband polarization splitter-rotator and the application in WDM receiver[J]. IEEE Photonics Journal, 2019, 11(1): 6600310. doi: 10.1109/JPHOT.2018.2886268.
    [5] TAN Ying, WU Hao, and DAI Daoxin. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing[J]. Journal of Lightwave Technology, 2018, 36(11): 2051–2058. doi: 10.1109/JLT.2017.2771352.
    [6] DAI Daoxin, LIU Liu, GAO Shiming, et al. Polarization management for silicon photonic integrated circuits[J]. Laser & Photonics Reviews, 2013, 7(3): 303–328. doi: 10.1002/lpor.201200023.
    [7] ZAFAR H and PEREIRA M F. Recent progress in light polarization control schemes for silicon integrated photonics[J]. Laser & Photonics Reviews, 2024, 18(11): 2301025. doi: 10.1002/lpor.202301025.
    [8] SHAHWAR D, YOON H H, AKKANEN S T, et al. Polarization management in silicon photonics[J]. npj Nanophotonics, 2024, 1(1): 35. doi: 10.1038/s44310-024-00033-6.
    [9] HUANG Jie, YANG Junbo, CHEN Dingbo, et al. Ultra-compact broadband polarization beam splitter with strong expansibility[J]. Photonics Research, 2018, 6(6): 574–578. doi: 10.1364/PRJ.6.000574.
    [10] GAN Ranfeng, QI Lu, RUAN Ziliang, et al. Fabrication tolerant and broadband polarization splitter-rotator based on adiabatic mode evolution on thin-film lithium niobate[J]. Optics Letters, 2022, 47(19): 5200–5203. doi: 10.1364/OL.470216.
    [11] CHUNG K F, SHIH Y T, MA Yiren, et al. Broadband ultra-compact polarization splitter–rotator using diagonally overlapped bi-layer architecture[J]. Applied Optics, 2022, 61(27): 8064–8071. doi: 10.1364/AO.470750.
    [12] XIE Changjian, ZOU Xihua, LI Peixuan, et al. Ultracompact silicon polarization splitter-rotator using a dual-etched and tapered coupler[J]. Applied Optics, 2020, 59(30): 9540–9547. doi: 10.1364/AO.404741.
    [13] CHEN Jingyuan and XIAO Jinbiao. Ultracompact silicon-based polarization splitter and rotator based on asymmetric directional couplers with subwavelength gratings[J]. Journal of the Optical Society of America B, 2022, 39(1): 345–354. doi: 10.1364/JOSAB.447359.
    [14] ZHANG Yong, HE Yu, JIANG Xinhong, et al. Ultra-compact and highly efficient silicon polarization splitter and rotator[J]. APL Photonics, 2016, 1(9): 091304. doi: 10.1063/1.4965832.
    [15] SUN Chunlei, YU Yu, CHEN Guanyu, et al. A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2253–2256. doi: 10.1109/LPT.2016.2591621.
    [16] CHUNG H C and TSENG S Y. Ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics[J]. Optics Express, 2018, 26(8): 9655–9665. doi: 10.1364/OE.26.009655.
    [17] CHEN Zhaoxi, YANG Jingwei, WONG W H, et al. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform[J]. Photonics Research, 2021, 9(12): 2319–2324. doi: 10.1364/PRJ.432906.
    [18] XU Hongnan and SHI Yaocheng. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide[J]. Optics Express, 2017, 25(15): 18485–18491. doi: 10.1364/OE.25.018485.
    [19] MA Minglei, PARK A H K, WANG Yun, et al. Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms[J]. Optics Express, 2019, 27(13): 17581–17591. doi: 10.1364/OE.27.017581.
    [20] SHEN Yuan, RUAN Ziliang, CHEN Kaixuan, et al. Broadband polarization splitter-rotator on a thin-film lithium niobate with conversion-enhanced adiabatic tapers[J]. Optics Express, 2023, 31(2): 1354–1366. doi: 10.1364/OE.481652.
    [21] WANG MengKe, YAO Hao, DENG Jiayao, et al. Polarization splitter-rotator on thin film lithium niobate based on multimode interference[J]. Optics Express, 2024, 32(16): 28175–28182. doi: 10.1364/OE.530883.
    [22] WANG Shumeng, LI Peng, and YAN Jize. Monolithically integrated polarization rotator and splitter with designed power ratio[J]. Optics Express, 2023, 31(9): 14128–14139. doi: 10.1364/OE.488419.
    [23] TAHERSIMA M H, KOJIMA K, KOIKE-AKINO T, et al. Deep neural network inverse design of integrated photonic power splitters[J]. Scientific Reports, 2019, 9(1): 1368. doi: 10.1038/s41598-018-37952-2.
    [24] DENG Xuyu, SUN Aolong, YI Qiyuan, et al. Inverse design of a wavelength (de)multiplexer for 1.55- and 2-μm wavebands by using a hybrid analog-digital method[J]. Journal of Lightwave Technology, 2024, 42(15): 5231–5240. doi: 10.1109/JLT.2024.3386668.
    [25] HAN Jingmin, HUANG Jie, WU Jiagui, et al. Inverse designed tunable four-channel wavelength demultiplexer[J]. Optics Communications, 2020, 465: 125606. doi: 10.1016/j.optcom.2020.125606.
    [26] ZHAO Zhikai, JIANG Yongheng, DENG Yubo, et al. Ultra-compact dual-wavelength-dual-mode (de)multiplexer utilizing topology optimization[C]. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 2023: 625–628. doi: 10.1109/EEBDA56825.2023.10090624.
    [27] JIANG Weifeng, MAO Siqiang, and HU Jinzhu. Ultra-compact silicon mode (de) multiplexer using inverse-designed adiabatic coupler[J]. Journal of Lightwave Technology, 2024, 42(5): 1573–1579. doi: 10.1109/JLT.2023.3323332.
    [28] LU Qichao, YAN Xin, WEI Wei, et al. High-speed ultra-compact all-optical NOT and AND logic gates designed by a multi-objective particle swarm optimized method[J]. Optics & Laser Technology, 2019, 116: 322–327. doi: 10.1016/j.optlastec.2019.03.032.
    [29] LIU Yuxiao, LI Hongxiang, CHEN Weiwei, et al. Direct-binary-search-optimized compact silicon-based polarization beam splitter using a pixelated directional coupler[J]. Optics Communications, 2021, 484: 126670. doi: 10.1016/j.optcom.2020.126670.
    [30] XU Haoda, TIAN Ye, LI Yan, et al. Inverse design of highly-efficient and broadband polarization beam splitter on SOI platform[J]. Optics Communications, 2024, 572: 130986. doi: 10.1016/j.optcom.2024.130986.
    [31] LIU Yingjie, WANG Shuai, WANG Yujie, et al. Subwavelength polarization splitter–rotator with ultra-compact footprint[J]. Optics Letters, 2019, 44(18): 4495–4498. doi: 10.1364/OL.44.004495.
    [32] PERESTJUK M, BOERMA H, SCHINDLER A, et al. Inverse-designed InP-based polarization rotator-splitter[C]. Optical Fiber Communication Conference (OFC) 2021, Washington, United States, 2021: W6A. 49. doi: 10.1364/OFC.2021.W6A.49.
    [33] LALAU-KERALY C M, BHARGAVA S, MILLER O D, et al. Adjoint shape optimization applied to electromagnetic design[J]. Optics Express, 2013, 21(18): 21693–21701. doi: 10.1364/OE.21.021693.
    [34] KANG C, SEO D, BORISKINA S V, et al. Adjoint method in machine learning: A pathway to efficient inverse design of photonic devices[J]. Materials & Design, 2024, 239: 112737. doi: 10.1016/j.matdes.2024.112737.
    [35] GIVOLI D. A tutorial on the adjoint method for inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 380: 113810. doi: 10.1016/j.cma.2021.113810.
    [36] XU Jiefeng, WANG Xi, WU Yifan, et al. Topology optimization of a broadband and fabrication-friendly polarization splitter-rotator on silicon platform[C]. CLEO: Applications and Technology 2023, San Jose, United States, 2023: JW2A. 18. doi: 10.1364/CLEO_AT.2023.JW2A.18.
    [37] WANG Shumeng, LI Peng, and YAN Jize. Monolithically integrated polarization rotator and splitter with designed power ratio[J]. Optics Express, 2023, 31(9): 14128–14139. doi: 10.1364/OE.488419. (查阅网上资料,本条文献与第22条文献重复,请确认).
    [38] XIAO Haosheng, YE Feng, FU H Y, et al. Topology optimization for a broadband polarization splitter-rotator based on lithium niobate-on-insulator[C]. 2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), Sapporo, Japan, 2025: 1–3. doi: 10.23919/OECC/PSC62146.2025.11111459.
    [39] JENSEN J S and SIGMUND O. Topology optimization for nano‐photonics[J]. Laser & Photonics Reviews, 2011, 5(2): 308–321. doi: 10.1002/lpor.201000014.
    [40] WANG Kaiyuan, REN Xinshu, CHANG Weijie, et al. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Research, 2020, 8(4): 528–533. doi: 10.1364/PRJ.383887.
    [41] YUAN Wei, HU Fei, and LU Liangfu. A new non-adaptive optimization method: Stochastic gradient descent with momentum and difference[J]. Applied Intelligence, 2022, 52(4): 3939–3953. doi: 10.1007/s10489-021-02224-6.
    [42] SU Logan, PIGGOTT A Y, SAPRA N V, et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer[J]. ACS Photonics, 2018, 5(2): 301–305. doi: 10.1021/acsphotonics.7b00987.
    [43] RUAN Xiaoke, LI Hao, and CHU Tao. Inverse-designed ultra-compact polarization splitter–rotator in standard silicon photonic platforms with large fabrication tolerance[J]. Journal of Lightwave Technology, 2022, 40(21): 7142–7149. doi: 10.1109/JLT.2022.3199427.
    [44] CHEN Houyu, WANG Yinghui, MAO Simei, et al. Integrating inverse design and partially etched platform: An ultra-compact polarization splitter and rotator as an example[J]. Applied Optics, 2024, 63(12): 3178–3185. doi: 10.1364/AO.521930.
    [45] GUO Defen and CHU Tao. Broadband and low-crosstalk polarization splitter-rotator with optimized tapers[J]. OSA Continuum, 2018, 1(3): 841–850. doi: 10.1364/OSAC.1.000841.
    [46] HUNG Y J, CHEN C H, CHUNG H C, et al. Compact and broadband silicon polarization splitter–rotator using adiabaticity engineering[J]. Optics Letters, 2024, 49(7): 1852–1855. doi: 10.1364/OL.518607.
    [47] YU Kan, WANG Lijun, WU Wenhao, et al. Demonstration of an on-chip broadband polarization splitter and rotator using counter-tapered coupler[J]. Optics Communications, 2019, 431: 58–62. doi: 10.1016/j.optcom.2018.09.015.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  14
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 修回日期:  2025-11-13
  • 录用日期:  2025-11-13
  • 网络出版日期:  2025-11-18

目录

    /

    返回文章
    返回