高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向无人机辅助电力巡检的短包通信资源优化

初航 董志浩 曹杰 石怀峰 曾海勇 朱旭

初航, 董志浩, 曹杰, 石怀峰, 曾海勇, 朱旭. 面向无人机辅助电力巡检的短包通信资源优化[J]. 电子与信息学报. doi: 10.11999/JEIT250852
引用本文: 初航, 董志浩, 曹杰, 石怀峰, 曾海勇, 朱旭. 面向无人机辅助电力巡检的短包通信资源优化[J]. 电子与信息学报. doi: 10.11999/JEIT250852
CHU Hang, DONG Zhihao, CAO Jie, SHI Huaifeng, ZENG Haiyong, ZHU Xu. Optimization of Short Packet Communication Resources for UAV Assisted Power Inspection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250852
Citation: CHU Hang, DONG Zhihao, CAO Jie, SHI Huaifeng, ZENG Haiyong, ZHU Xu. Optimization of Short Packet Communication Resources for UAV Assisted Power Inspection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250852

面向无人机辅助电力巡检的短包通信资源优化

doi: 10.11999/JEIT250852 cstr: 32379.14.JEIT250852
详细信息
    作者简介:

    初航:硕士生,研究方向为短包通信、语义通信

    董志浩:博士生,研究方向为无线联邦学习、资源优化等

    曹杰:助理教授,研究方向为短包实时通信技术、任务导向通信以及面向下一代通信范式的语义通信

    石怀峰:副教授,研究方向为强化学习、深度学习以及大模型等应用于新一代网络

    曾海勇:副教授,研究方向为无人机辅助通信、非正交多址接入技术

    朱旭:教授,研究方向为超可靠低时延通信、短包通信等

    通讯作者:

    曹杰 caojhitsz@ieee.org

  • 中图分类号: TN925

Optimization of Short Packet Communication Resources for UAV Assisted Power Inspection

  • 摘要: 在无人机辅助电力巡检场景中,为保障电网安全运行,无人机需实时采集并回传电网关键状态参数和图像、视频等多模态数据,控制中心基于此对电网进行调度与调控。无人机巡检任务中的数据采集与回传具有超可靠低时延和实时大带宽等通信需求。然而,无线通信资源的稀缺性和无人机能量约束使得上述异构需求难满足,进而导致巡检数据的时效性和巡检任务的有效性难保障。针对上述挑战,本文提出了数据传输调度与通信资源分配的协同优化算法,在任务性能与约束下,降低系统开销,并基于非正交多址接入技术设计长短包混合帧结构,满足异构通信需求。在无人机数据传输调度方面,将调度决策建模为马尔可夫决策过程,并将通信消耗纳入决策成本。在通信资源优化方面,联合优化长短包功率配置、短包包长和导频长度,进而在保障长包传输需求的前提下,提升短包传输的可靠性,满足异构通信需求,实现低开销的无人机电力巡检策略。仿真结果表明,该方法能够在保障传输可靠性的同时,显著降低通信成本,为无人机辅助电力巡检场景中的异构数据传输提供有效支撑。
  • 图  1  无人机辅助电力巡检场景下的异构数据采集与传输

    图  2  基于NOMA技术的长短包混合帧结构

    图  3  优化算法性能对比

    图  4  算法收敛性分析

    图  5  调度策略

    表  1  无人机数据传输调度算法表

     算法:基于值迭代的数据传输调度算法
     输入:状态$ {s_k} $,动作$ {a_k} $,状态转移概率$ P\left\langle {{{s_k}}} \mathrel{\left | {\vphantom {{{s_k}} {{s_{k - 1}},{a_{k - 1}}}}} \right. } {{{s_{k - 1}},{a_{k - 1}}}} \right\rangle $,AoI阈值$ {\Delta _{{\text{thr}}}} $,语义匹配度阈值$ \zeta $,通信成本${l_k}$,折扣因子$\upsilon \in [0,1)$,收敛
     阈值$\varsigma $;
     输出:调度矩阵$\Pi $;
     1:初始化值函数${V^0}({s_k}) = 1$,${V^1}({s_k}) = 0$,迭代轮次$i = 1$;
     2://值迭代主循环
     3:repeat
     4: 初始化:$i = i + 1$,${V^i}({s_k}) = {V^{i + 1}}({s_k})$,$\delta = 0$
     5: for每个时隙状态${s_k}$ do
     6:  计算动作价值函数:$ Q({s_k},{a_k}) = {l_k} + \upsilon \cdot \sum\limits_{{s_k}} {P({s_k}|{s_{k - 1}},{a_k})V({s_k})} \} $
     7:  更新值函数:$V({s_k}) = \min \{ Q({s_k},0),Q({s_k},1)\} $
     8:  $\delta = \max \{ \delta ,\left| {{V^i}({s_k}) - {V^{i - 1}}({s_k})} \right|$
     9: end for
     10:Until $\delta $<$\varsigma $
     11://策略提取阶段
     12:for 每个时隙状态${s_k}$ do
     13: 得出最优策略$ \pi *({s_k}) = \mathop {\arg \min }\limits_{{a_k} \in \{ 0,1\} } \{ {l_k} + \upsilon \cdot \sum\limits_{{s_k}} {P\left\langle {{{s_k}}} \mathrel{\left | {\vphantom {{{s_k}} {{s_{k - 1}},0}}} \right. } {{{s_{k - 1}},0}} \right\rangle V({s_k})} \} $
     14:end for
     15:return $\pi *$
    下载: 导出CSV

    表  2  基于NOMA的混合帧结构传输优化算法

     算法:联合优化短包关联矩阵、导频长度、短包长度以及长短包
     功率
     输入:长包信噪比门限${\gamma _{{\text{th}}}}$,总功率限制${P_{\max }}$,短包信息比特数
     $L$,最长帧长${N_{\max }}$,算法收敛阈值$\theta $。
     1:短包关联矩阵${\Phi _1}$,功率分配${P_1}^S,{P_1}^L$,短包长度${N_{{s_1}}}$,导
     频长度${N_{{p_1}}}$,迭代轮次$r = 1$。
     2:重复步骤(3)到(6)直到满足$\left| {{\eta _r} - {\eta _{r - 1}}} \right| < \theta $。
     3:已知${N_{{p_{r - 1}}}},{N_{{S_{r - 1}}}},P_{r - 1}^S,P_{r - 1}^L$求解优化问题${\text{P2}}{\text{.1}}$,得到
     ${\Phi _r}$
     4:已知${\Phi _r},P_r^S,P_r^L$,求解优化问题${\text{P2}}{\text{.2}}$,得到${N_{{p_r}}},{N_{{S_r}}}$。
     5:已知${\Phi _r},{N_{{p_r}}},{N_{{S_r}}}$求解优化问题${\text{P2}}{\text{.3}}$,得到$P_r^S,P_r^L$。
     6:得到${\eta _r}$,更新迭代次数$r = r + 1$
     7:结束并输出。
     输出:短包关联矩阵$\Phi $,功率分配${P^S},{P^L}$,短包长度${N_s}$,导频
     长度${N_p}$。
    下载: 导出CSV

    表  3  仿真参数设置表

    参数 数值
    混合帧结构最长帧长${N_{\max }}$ 800 bits
    每帧结构携带短包数$M$ 10
    长包信噪比门限${\gamma _{{\text{th}}}}$ [5, 13] dB
    短包信息比特数$L$ [150, 300] bit
    传输总功率限制${P_{\max }}$ 1 W
    总带宽$B$ 1 MHz
    噪声功率谱密度${N_0}$ –170 dBm/Hz
    状态转移概率$P$ 0.4
    两种环境条件下的频移阈值$ {\zeta _0} $、$ {\zeta _1} $ 0.1 Hz, 0.01 Hz
    折扣因子$\upsilon $ 0.95
    下载: 导出CSV
  • [1] CAO Lei and WANG Huai. Research on UAV network communication application based on 5G technology[C]. Proceedings of 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI), Zhuhai, China, 2022: 125–129. doi: 10.1109/IWECAI55315.2022.00033.
    [2] DIAO Xianbang, CAI Yueming, YU Baoquan, et al. Location and complex status update strategy optimization in UAV-assisted IoT[J]. IEEE Internet of Things Journal, 2023, 10(13): 11588–11604. doi: 10.1109/JIOT.2023.3244541.
    [3] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. Proceedings of 2012 IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
    [4] ZHANG X, CHANG Z, HÄMÄLÄINEN T, et al. AoI-energy tradeoff for data collection in UAV-assisted wireless networks[J]. IEEE Transactions on Communications, 2024, 72(3): 1849–1861. doi: 10.1109/TCOMM.2023.3337400.
    [5] HUANG Xiong and FU Xiuwen. Fresh data collection for UAV-assisted IoT based on aerial collaborative relay[J]. IEEE Sensors Journal, 2023, 23(8): 8810–8825. doi: 10.1109/JSEN.2023.3253920.
    [6] NG B K, LAM C T, and LAW E K L. Blocklength minimization in NOMA systems with hybrid long and short packets[C]. Proceedings of 2021 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 2021: 1–5. doi: 10.1109/LATINCOM53176.2021.9647829.
    [7] ZENG Haiyong, ZHANG Rui, ZHU Xu, et al. Frame structure and resource optimization for hybrid NOMA-based data collection in IIoT with imperfect SIC[J]. IEEE Internet of Things Journal, 2024, 11(23): 37799–37812. doi: 10.1109/JIOT.2024.3444462.
    [8] VILNI S S, MOLTAFET M, LEINONEN M, et al. Multi-source AoI-constrained resource minimization under HARQ: Heterogeneous sampling processes[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1084–1099. doi: 10.1109/TVT.2023.3310190.
    [9] CHEN He, GU Yifan, and LIEW S C. Age-of-information dependent random access for massive IoT networks[C]. Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 930–935. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162973.
    [10] QIN Meng, CHENG Nan, JING Zewei, et al. Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks[J]. IEEE Internet of Things Journal, 2021, 8(3): 1896–1907. doi: 10.1109/JIOT.2020.3015970.
    [11] WANG Kunlun, NIYATO D, CHEN Wen, et al. Task-oriented delay-aware multi-tier computing in cell-free massive MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(7): 2000–2012. doi: 10.1109/JSAC.2023.3280965.
    [12] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [13] JINDAL N and LOZANO A. A unified treatment of optimum pilot overhead in multipath fading channels[J]. IEEE Transactions on Communications, 2010, 58(10): 2939–2948. doi: 10.1109/TCOMM.2010.083110.090696.
    [14] ADEMAJ F, TARANETZ M, and RUPP M. 3GPP 3D MIMO channel model: A holistic implementation guideline for open source simulation tools[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016(1): 55. doi: 10.1186/s13638-016-0549-9.
    [15] LAI Xiazhi, ZHANG Qi, and QIN Jiayin. Downlink NOMA networks with hybrid long-packet and short-packet communications in flat Rayleigh fading channels[J]. IEEE Systems Journal, 2020, 14(3): 3410–3413. doi: 10.1109/JSYST.2019.2931843.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  11
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-31
  • 修回日期:  2025-09-25
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-15

目录

    /

    返回文章
    返回