高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助的无线通信系统波束赋形及智能反射面相移技术综述

邢智童 李云 吴广富 夏士超

邢智童, 李云, 吴广富, 夏士超. 智能反射面辅助的无线通信系统波束赋形及智能反射面相移技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT250790
引用本文: 邢智童, 李云, 吴广富, 夏士超. 智能反射面辅助的无线通信系统波束赋形及智能反射面相移技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT250790
XING Zhitong, LI Yun, WU Guangfu, XIA Shichao. A Review on Phase Rotation and Beamforming Scheme for Intelligent Reflecting Surface Assisted Wireless Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250790
Citation: XING Zhitong, LI Yun, WU Guangfu, XIA Shichao. A Review on Phase Rotation and Beamforming Scheme for Intelligent Reflecting Surface Assisted Wireless Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250790

智能反射面辅助的无线通信系统波束赋形及智能反射面相移技术综述

doi: 10.11999/JEIT250790 cstr: 32379.14.JEIT250790
基金项目: 国家自然科学基金(62301100),重庆市教委科学技术研究计划项目青年项目(KJQN202200606, KJQN202300638),重庆市自然科学基金(CSTB2024NSCQ-MSX0210, CSTB2024NSCQ-QCXMX0063, CSTC2024YCJH-BGZXM003),重庆市自然科学基金创新发展联合基金(CSTB2025NSCQ-LZX0053)
详细信息
    作者简介:

    邢智童:男,讲师,研究方向为无线通信传输、大规模MIMO和智能反射面

    李云:男,教授,研究方向为蜂窝通信、智能反射面和边缘计算

    吴广富:男,副教授,研究方向为卫星通信和大规模MIMO系统

    夏士超:男,讲师,研究方向为大规模MIMO系统和边缘计算

    通讯作者:

    李云 liyun@cqupt.edu.cn

  • 中图分类号: TN919.72

A Review on Phase Rotation and Beamforming Scheme for Intelligent Reflecting Surface Assisted Wireless Communication Systems

Funds: The National Natural Science Foundation of China (62301100), Scientific and Technological Research Program of Chongqing Municipal Education Commission Youth Project (KJQN202200606, KJQN202300638), Chongqing Natural Science Foundation (CSTB2024NSCQ-MSX0210, CSTB2024NSCQ-QCXMX0063, CSTC2024YCJH-BGZXM003), Chongqing Natural Science Foundation Innovation and Development Joint Fund(CSTB2025NSCQ-LZX0053)
  • 摘要: 自2020年5G设备开始大规模商用部署后,全球业界已经开始了6G技术的研究。在5G/6G时代,通信系统需要适应更加复杂的信道环境,如超高密度的城市环境、远海、沙漠、森林等地域。因此,如果能够有一种低能耗的方式,对无线通信信道进行自适应的调整和重构,将不仅有助于无线通信设备向传输时延更低、传输速率更快、接收能力更强等方面进一步迈进,而且可以帮助无线通信设备更好地部署于复杂信道环境的地域。智能反射面(IRS)被认为是实现信道环境重构的一种有效的设备。这些IRS设备大多是无源设备,因此,不会带来过多的能耗。当IRS与单输入单输出(SISO)、多输入单输出(MISO)、多输入多输出(MIMO)等技术相结合,将进一步提高无线通信传输的传输速率、降低无线通信的能耗、增强无线通信设备对复杂信道环境的适应性。该文对IRS辅助的SISO,MISO和MIMO系统的信号传输模型进行系统总结,分析了IRS辅助的SISO,MISO和MIMO的信号传输建模方式,并对IRS辅助的SISO,MISO和MIMO系统的波束赋形和相移技术进行了综述。
  • 图  1  IRS的基本结构图

    图  2  IRS辅助的SISO信号传输图

    图  3  IRS辅助的MISO信号传输图

    图  4  IRS辅助的MIMO信号传输图

    表  1  最小化功耗波束赋形典型优化算法总结

    文献 核心目标 方法/算法 适用场景 优缺点
    [6] 最小化发射功率,满足用户SINR约束 交替优化、半正定松弛 多用户MISO下行 优点:理论完整;缺点:假设连续相移,
    不切实际
    [7] 离散相移下的功耗优化 分支定界、隐枚举法 硬件受限系统 优点:更实用;缺点:性能损失,复杂度高
    [11] NOMA分簇下的功率最小化 ADMM算法 密集用户场景 优点:提升频谱效率;缺点:簇间干扰难控制
    [12,13] SWIPT系统中功率最小化 最小均方误差+交替优化 能量收集通信 优点:能同时满足速率与能量约束;
    缺点:非凸问题难收敛
    [16] 存在硬件损伤下的安全功耗优化 联合波束与相位设计 全双工NOMA安全系统 优点:考虑实际损伤;缺点:模型复杂,
    难以实现
    下载: 导出CSV

    表  2  最大化能效波束赋形典型优化算法总结

    文献核心目标方法/算法适用场景优缺点
    [21]反射元器件分组服务的能效优化基于位置的相位优化多用户SISO系统优点:复杂度低,易于实现;
    缺点:性能受用户分布影响大
    [22]用户中心网络的能效最大化分式规划+最大值最小化算法上行用户中心网络优点:兼顾用户体验与能效;
    缺点:需要精确的信道信息
    [23]通感一体系统的能效优化多约束联合优化通信感知一体化优点:实现通感功能平衡;
    缺点:优化变量多,收敛性差
    [24]STAR-IRS赋能的能效优化联合优化反射系数与功率分配速率分割多址系统优点:全空间覆盖,频谱效率高;
    缺点:能量守恒约束增加复杂度
    [26]MIMO-SWIPT系统的能效优化基于均方误差的交替优化无线携能通信优点:同时服务信息与能量接收端;
    缺点:非凸问题求解困难
    下载: 导出CSV

    表  3  最大化和速率束赋形典型优化算法总结

    文献核心目标方法/算法适用场景优缺点
    [28]混合多址接入下的和速率最大化时分多址+非正交多址物联网上行优点:支持多设备;缺点:相位分配策略复杂
    [33]功率受限下的和速率最大化ZF传输+最大最小化算法多用户MISO优点:低复杂度;缺点:性能受限于迫零预编码
    [36]非理想相移模型下的和速率优化交替优化实际IRS系统优点:模型更真实;缺点:对误差敏感
    [42]变频IRS下的速率最大化频率偏移调度算法频域分集系统优点:提升频域分集;缺点:硬件实现难度大
    [43]有源IRS下的和速率优化深度学习高功率、高复杂度场景优点:自适应强;缺点:训练开销大
    下载: 导出CSV

    表  4  最大化公平通信速率波束赋形典型优化算法总结

    文献核心目标方法/算法适用场景优缺点
    [57]最大化最小波束方向图增益联合发射与反射波束设计通感一体化系统优点:兼顾感知与通信;缺点:目标冲突难平衡
    [58]最小化最大均方误差联合预编码与STAR-IRS设计全空间覆盖系统优点:提升用户公平性;缺点:优化变量多,收敛慢
    [59]最大化最小用户SINR联合波束与相位优化NOMA系统优点:适用于功率域复用;缺点:对信道差异敏感
    [60]分布式IRS的最小用户速率最大化中央协调的分布方案广域覆盖网络优点:时隙灵活;缺点:调度策略复杂
    下载: 导出CSV
  • [1] KIRIK M, ALKANA'NEH A, AFEEF L, et al. Efficient interference management design for NTN/TN co-existence in HAP-based 6G networks[J]. IEEE Open Journal of the Communications Society, 2025, 6: 5434–5449. doi: 10.1109/OJCOMS.2025.3580452.
    [2] LIU Guangyi, ZHU Yanhong, KANG Mancong, et al. Native design for 6G digital twin network: Use cases, architecture, functions, and key technologies[J]. IEEE Internet of Things Journal, 2025, 12(15): 29135–29151. doi: 10.1109/JIOT.2025.3553500.
    [3] LI Xinyao, FEI Teng, CHEN Ruogu, et al. Intelligent reflective surface assisted beamforming optimization[C]. 10th International Conference on Intelligent Computing and Signal Processing, Xi’an, China, 2025: 182–185. doi: 10.1109/ICSP65755.2025.11087112.
    [4] WU Qingqing, ZHENG Beixiong, YOU Changsheng, et al. Intelligent surfaces empowered wireless network: Recent advances and the road to 6G[J]. Proceedings of the IEEE, 2024, 112(7): 724–763. doi: 10.1109/JPROC.2024.3397910.
    [5] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192.
    [6] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [7] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916.
    [8] BJÖRNSON E, ÖZDOGAN Ö, and LARSSON E G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?[J]. IEEE Wireless Communications Letters, 2020, 9(2): 244–248. doi: 10.1109/LWC.2019.2950624.
    [9] YU Xianghao, XU Dongfang, and SCHOBER R. Miso wireless communication systems via intelligent reflecting surfaces: (Invited paper)[C]. 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 2019: 735–740. doi: 10.1109/ICCChina.2019.8855810.
    [10] HAN Huimei, ZHAO Jun, NIYATO D, et al. Intelligent reflecting surface aided network: Power control for physical-layer broadcasting[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–7. doi: 10.1109/ICC40277.2020.9148827.
    [11] LI Yiqing, JIANG Miao, ZHANG Qi, et al. Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks[J]. IEEE Transactions on Communications, 2021, 69(1): 664–674. doi: 10.1109/TCOMM.2020.3032695.
    [12] VISHWAKARMA P, SUR S N, DHAR S, et al. IRS-assisted SWIPT: Power optimization strategies for green communications[C]. 17th International Conference on Communication Systems and Networks, Bengaluru, India, 2025: 356–364. doi: 10.1109/COMSNETS63942.2025.10885691.
    [13] YASWANTH J, SINGH S K, SINGH K, et al. Energy-efficient beamforming design for RIS-aided MIMO downlink communication with SWIPT[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(3): 1164–1180. doi: 10.1109/TGCN.2023.3273031.
    [14] JIANG Jinghan, WANG Yajun, LIAN Zhuxian, et al. Joint beamforming and phase shift design in intelligent reflecting surface-assisted wireless communications[J]. IEEE Internet of Things Journal, 2025, 12(19): 41170–41180. doi: 10.1109/JIOT.2025.3592309.
    [15] HAO Qin, JIA Zhu, ZOU Yulong, et al. Energy efficiency optimization for active reconfigurable intelligent surface assisted multi-antenna jamming systems[J]. China Communications, 2025, 22(6): 44–56. doi: 10.23919/JCC.ja.2023-0672.
    [16] MEAD J A, SINGH K, ALLU R, et al. Transmit power minimization for secure RIS-aided full-duplex NOMA communications with HWI[C]. 2024 IEEE Globecom Workshops, Cape Town, South Africa, 2024: 1–6. doi: 10.1109/GCWkshp64532.2024.11100374.
    [17] FU Min, ZHOU Yong, and SHI Yuanming. Intelligent reflecting surface for downlink non-orthogonal multiple access networks[C]. 2019 IEEE GLOBECOM Workshops, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GCWkshps45667.2019.9024675.
    [18] ZHENG Beixiong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?[J]. IEEE Communications Letters, 2020, 24(4): 753–757. doi: 10.1109/LCOMM.2020.2969870.
    [19] WU Qingqing and ZHANG Rui. Beamforming optimization for intelligent reflecting surface with discrete phase shifts[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 7830–7833. doi: 10.1109/ICASSP.2019.8683145.
    [20] ATA Y, ZEDINI E, VEGNI A M, et al. Reflect-and-amplify: A novel SWIPT technique through hybrid active/passive RIS[J]. IEEE Internet of Things Journal, 2025, 12(12): 22073–22089. doi: 10.1109/JIOT.2025.3549976.
    [21] KUMAR M P, SUMMAQ A, and CHINNADURAI S. Phase shift optimization for energy-efficient uplink communication in IRS-aided system[C]. 17th International Conference on Communication Systems and Networks (COMSNETS), Bengaluru, India, 2025: 1172–1177. doi: 10.1109/COMSNETS63942.2025.10885611.
    [22] ZHANG Chenwu, LU Hancheng, and CHEN Changwen. Reconfigurable intelligent surfaces-enhanced uplink user-centric networks on energy efficiency optimization[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9013–9028. doi: 10.1109/TWC.2023.3267819.
    [23] LIU Wenhui, JIAO Wanguo, ZHANG Xian, et al. Joint beamforming and reflection design for maximizing energy efficiency of RIS-assisted ISAC systems[J]. IEEE Transactions on Wireless Communications, 2025. doi: 10.1109/TWC.2025.3596087.
    [24] GAO Chang, HUI Xiaonan, HUANG Chongwen, et al. Energy efficiency optimization of STAR-RIS empowered RSMA system with SWIPT[C]. IEEE 24th International Conference on Communication Technology, Chengdu, China, 2024: 1691–1696. doi: 10.1109/ICCT62411.2024.10946368.
    [25] NASIR A A. Max-min secure energy efficiency optimization for STAR-RIS-assisted near-field wideband THz communication[J]. IEEE Transactions on Green Communications and Networking, 2025. doi: 10.1109/TGCN.2025.3541095.
    [26] TANG Jie, PENG Ziyao, SO D K C, et al. Energy efficiency optimization for a multiuser IRS-aided MISO system with SWIPT[J]. IEEE Transactions on Communications, 2023, 71(10)): 5950–5962. doi: 10.1109/TCOMM.2023.3296631.
    [27] SUTHAKAR B, AKASH S, KUMARAVELU V B, et al. Data rate maximization in IRS-aided downlink with effective positioning[C]. 2024 International Conference on Smart Electronics and Communication Systems, Kottayam, India, 2024: 1–6. doi: 10.1109/ISENSE63713.2024.10872271.
    [28] YU Xianghao, XU Dongfang, and SCHOBER R. Optimal beamforming for MISO communications via intelligent reflecting surfaces[C]. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, USA, 2020: 1–5. doi: 10.1109/SPAWC48557.2020.9154337.
    [29] NING Boyu, CHEN Zhi, CHEN Wenjie, et al. Beamforming optimization for intelligent reflecting surface assisted MIMO: A sum-path-gain maximization approach[J]. IEEE Wireless Communications Letters, 2020, 9(7): 1105–1109. doi: 10.1109/LWC.2020.2982140.
    [30] ZHU Wenhui, LI Beilun, WANG Xiaoqing, et al. Design of robust beamforming algorithm for intelligent reflecting surface-assisted MISO backscatter communication system[C]. 14th International Symposium on Antennas, Propagation and EM Theory, Hefei, China, 2024: 1–4. doi: 10.1109/ISAPE62431.2024.10840581.
    [31] LIU Tianji, ZHOU Hu, LONG Ruizhe, et al. Improving physical layer security with RIS-assisted symbiotic radio[C]. IEEE International Conference on Communications, Denver, USA, 2024: 593–598. doi: 10.1109/ICC51166.2024.10622723.
    [32] YANG Yifei, ZHENG Beixiong, ZHANG Shuowen, et al. Intelligent reflecting surface meets OFDM: Protocol design and rate maximization[J]. IEEE Transactions on Communications, 2020, 68(7): 4522–4535. doi: 10.1109/TCOMM.2020.2981458.
    [33] HUANG Chongwen, ZAPPONE A, DEBBAH M, et al. Achievable rate maximization by passive intelligent mirrors[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 3714–3718. doi: 10.1109/ICASSP.2018.8461496.
    [34] YUAN Jie, LIANG Yingchang, JOUNG Jingon, et al. Intelligent reflecting surface-assisted cognitive radio system[J]. IEEE Transactions on Communications, 2021, 69(1): 675–687. doi: 10.1109/TCOMM.2020.3033006.
    [35] WANG Peilan, FANG Jun, YUAN Xiaojun, et al. Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14960–14973. doi: 10.1109/TVT.2020.3031657.
    [36] ABEYWICKRAMA S, ZHANG Rui, and YUEN C. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148961.
    [37] HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997.
    [38] ZHOU Xiaobo, ZHOU Xiuying, YAN Shihao, et al. Intelligent reflecting surface-aided covert wireless communications with finite-alphabet inputs[J]. IEEE Transactions on Vehicular Technology, 2025, 74(4): 6709–6714. doi: 10.1109/TVT.2024.3508819.
    [39] MEI Yaowen, LI Na, and TAO Xiaofeng. A robust rate enhancement scheme for dual-RIS-aided air-ground integrated communication systems[C]. 2025 IEEE International Workshop on Radio Frequency and Antenna Technologies, Shenzhen, China, 2025: 212–217. doi: 10.1109/iWRFAT65352.2025.11103275.
    [40] XIE Daoyang, QIAO Jingping, MA Mingyu, et al. Secure terahertz communication with intelligent reflecting surface and energy harvesting[C]. 2025 IEEE International Workshop on Radio Frequency and Antenna Technologies, Shenzhen, China, 2025: 123–128. doi: 10.1109/iWRFAT65352.2025.11103407.
    [41] AWAD Y, AL-DHARRAB S, and MESBAH W. Performance analysis of RIS-assisted RF-based detection of unauthorized UAVs[J]. IEEE Open Journal of Vehicular Technology, 2025, 6: 1963–1976. doi: 10.1109/OJVT.2025.3586263.
    [42] YUAN Jide, HUANG Huan, and JIN Shi. On the performance of frequency-mixing reconfigurable intelligent surfaces-aided system: Achievable rates and reflective patterns[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 3117–3131. doi: 10.1109/TWC.2025.3528002.
    [43] XI Zhipeng and JI Jianbo. Sum rate maximization for active RIS MISO systems based on DRL[J]. IEEE Access, 2025, 13: 4315–4325. doi: 10.1109/ACCESS.2025.3525562.
    [44] YANG Shuo, XU Xiaorong, and BAO Jianrong. Secrecy rate based beamforming optimization strategy in IRS-assisted multiuser CR-SWIPT MIMO system[C]. 2024 China Automation Congress, Qingdao, China, 2024: 6030–6034. doi: 10.1109/CAC63892.2024.10865493.
    [45] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814.
    [46] CORNELIS S, NOELS N, and MOENECLAEY M. Rate-maximizing zero-forcing hybrid Precoder for MU-MISO-OFDM[J]. IEEE Access, 2023, 11: 3275–3290. doi: 10.1109/ACCESS.2023.3234866.
    [47] YING Keke, GAO Zhen, LYU Shanxiang, et al. GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO[J]. IEEE Access, 2020, 8: 19530–19539. doi: 10.1109/ACCESS.2020.2968456.
    [48] GUO Chang, LU Zhufei, GUO Zhe, et al. Maximum ergodic capacity of intelligent reflecting surface assisted MIMO wireless communication system[C]. 14th EAI International Conference of Communications and Networking, Shanghai, China, 2020: 331–343. doi: 10.1007/978-3-030-41114-5_25.
    [49] XU Hao, NING Boyu, OUYANG Chongjun, et al. Spectral efficiency maximization for DMA-enabled multiuser MISO with statistical CSI[J]. IEEE Internet of Things Journal, 2025, 12(18): 39130–39144. doi: 10.1109/JIOT.2025.3588060.
    [50] ZHANG Yu, ZHONG Caijun, ZHANG Zhaoyang, et al. Sum rate optimization for two way communications with intelligent reflecting surface[J]. IEEE Communications Letters, 2020, 24(5): 1090–1094. doi: 10.1109/LCOMM.2020.2978394.
    [51] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2604–2620. doi: 10.1109/JSAC.2020.3007056.
    [52] RANJAN R, BHATTACHARYA A, MUKHOPADHYAY S, et al. A gradient ascent based low complexity rate maximization algorithm for intelligent reflecting surface-aided OFDM systems[J]. IEEE Communications Letters, 2023, 27(8): 2083–2087. doi: 10.1109/LCOMM.2023.3289865.
    [53] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064–3076. doi: 10.1109/TWC.2020.2970061.
    [54] LIU Yihong, ZHANG Lei, YANG Bowen, et al. Programmable wireless channel for multi-user MIMO transmission using meta-surface[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013433.
    [55] ZHOU Gui, PAN Cunhua, REN Hong, et al. Intelligent reflecting surface aided multigroup multicast MISO communication systems[J]. IEEE Transactions on Signal Processing, 2020, 68(2): 3236–3251. doi: 10.1109/TSP.2020.2990098.
    [56] PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766.
    [57] WU Zhaoyu and ZHANG Wei. Joint transmit and reflect beamforming design for active-RIS-assisted secure ISAC systems[J]. IEEE Communications Letters, 2025, 29(8): 1769–1773. doi: 10.1109/LCOMM.2025.3572794.
    [58] HUANG Shihan, WANG Weijiang, REN Shiwei, et al. Min-max fairness-based beamforming design for coupled phase shift STAR-RIS-assisted MIMO system[J]. IEEE Internet of Things Journal, 2025, 12(3): 3145–3162. doi: 10.1109/JIOT.2024.3477422.
    [59] YANG Gang, XU Xinyue, and LIANG Yingchang. Intelligent reflecting surface assisted non-orthogonal multiple access[C]. 2020 IEEE Wireless Communications and Networking Conference, Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120476.
    [60] HU Sha, CHITTI K, RUSEK F, et al. User assignment with distributed large intelligent surface (LIS) systems[C]. IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 2018: 1–6. doi: 10.1109/PIMRC.2018.8580675.
    [61] YANG Yifei, ZHANG Shuowen, and ZHANG Rui. IRS-enhanced OFDMA: Joint resource allocation and passive beamforming optimization[J]. IEEE Wireless Communications Letters, 2020, 9(6): 760–764. doi: 10.1109/LWC.2020.2968303.
    [62] ZHU Guangyu, MU Xidong, GUO Li, et al. STAR-RIS assisted SWIPT systems: Active or passive?[J]. IEEE Transactions on Wireless Communications, 2025. doi: 10.1109/TWC.2025.3611793.
    [63] RODRIGUES D V Q and SINGH T. Efficient power allocation strategies in hybrid active-passive reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2024, 28(1): 113–117. doi: 10.1109/LCOMM.2023.3332514.
    [64] MU Xidong, LIU Yuanwei, GUO Li, et al. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3083–3098. doi: 10.1109/TWC.2021.3118225.
    [65] PANG Lihua, WANG Yue, ZHANG Yang, et al. Coverage optimization of hybrid active-passive STAR-RIS-assisted indoor–outdoor communication under hardware impairments and imperfect CSI[J]. IEEE Internet of Things Journal, 2025, 12(18): 37705–37719. doi: 10.1109/JIOT.2025.3584077.
    [66] CAI Yujin, YU Wenwu, NIE Xiaokai, et al. Double STAR-RIS enhanced secure wireless communications[J]. IEEE Transactions on Wireless Communications, 2025, 24(8): 6596–6612. doi: 10.1109/TWC.2025.3554769.
    [67] YANG Shaochuan, JIAO Yanzhen, WANG Yi, et al. Robust secure energy efficiency optimization for active STAR-RIS assisted ISAC systems[J]. IEEE Open Journal of the Communications Society, 2025, 6: 7459–7469. doi: 10.1109/OJCOMS.2025.3605726.
    [68] SHAHWAR M, AHMED M, HUSSAIN T, et al. Secure THz communication in 6G: A two-stage DRL approach for IRS-assisted NOMA[J]. IEEE Access, 2025, 13: 85294–85306. doi: 10.1109/ACCESS.2025.3569708.
    [69] BJÖRNSON E, WYMEERSCH H, MATTHIESEN B, et al. Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications[J]. IEEE Signal Processing Magazine, 2022, 39(2): 135–158. doi: 10.1109/MSP.2021.3130549.
    [70] DING Tongyu, FANG Linying, LIU Lu, et al. Design of an ultrawide-angle programmable metasurface based on hexagonal grid for 5G millimeter-wave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2025, 24(10): 3764–3768. doi: 10.1109/LAWP.2025.3603886.
    [71] ZHAO Huijin, FAN Fei, JI Yunyun, et al. Active terahertz beam manipulation with photonic spin conversion based on a liquid crystal Pancharatnam–Berry metadevice[J]. Photonics Research, 2022, 10(11): 2658–2666. doi: 10.1364/PRJ.471282.
    [72] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [73] LIU Yuanwei, XU Jiaqi, WANG Zhaolin, et al. Simultaneously transmitting and reflecting (STAR)RISs for 6G: Fundamentals, recent advances, and future directions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1689–1707. doi: 10.1631/FITEE.2300490.
    [74] BASHARAT S, HASSAN S A, MAHMOOD A, et al. Reconfigurable intelligent surface-assisted backscatter communication: A new frontier for enabling 6G IoT networks[J]. IEEE Wireless Communications, 2022, 29(6): 96–103. doi: 10.1109/MWC.009.2100423.
    [75] SONG Lizhao, SQUIRES A, VAN DER LAAN T, et al. THz graphene-integrated metasurface for electrically reconfigurable polarization conversion[J]. Nanophotonics, 2024, 13(13): 2349–2359. doi: 10.1515/nanoph-2023-0916.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  30
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回