高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向小样本的空间目标ISAR序列运动建模与模糊姿态分类方法

叶炬航 段佳 张磊

叶炬航, 段佳, 张磊. 面向小样本的空间目标ISAR序列运动建模与模糊姿态分类方法[J]. 电子与信息学报. doi: 10.11999/JEIT250689
引用本文: 叶炬航, 段佳, 张磊. 面向小样本的空间目标ISAR序列运动建模与模糊姿态分类方法[J]. 电子与信息学报. doi: 10.11999/JEIT250689
YE Juhang, DUAN Jia, ZHANG Lei. ISAR Sequence Motion Modeling and Fuzzy Attitude Classification Method for Small Sample Space Target[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250689
Citation: YE Juhang, DUAN Jia, ZHANG Lei. ISAR Sequence Motion Modeling and Fuzzy Attitude Classification Method for Small Sample Space Target[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250689

面向小样本的空间目标ISAR序列运动建模与模糊姿态分类方法

doi: 10.11999/JEIT250689 cstr: 32379.14.JEIT250689
基金项目: 国家自然基金项目(62201623),广东省自然基金项目(2025A1515010242)
详细信息
    作者简介:

    叶炬航:男,硕士生,研究方向为雷达资源管理

    段佳:女,副教授,研究方向为雷达成像、电磁特征提取

    张磊:男,教授,研究方向为SAR、ISAR高分辨成像与运动补偿等

    通讯作者:

    段佳 duanj9@mail.sysu.edu.cn

  • 中图分类号: TN95

ISAR Sequence Motion Modeling and Fuzzy Attitude Classification Method for Small Sample Space Target

  • 摘要: 空间目标姿态分类是空间态势感知中的关键环节,针对现有方法存在计算复杂度高、训练数据依赖性强、分类粒度粗糙,以及时序运动建模和小样本分类能力不足等问题,该文提出一种面向小样本、融合运动建模与模糊理论的姿态模糊分类方法。所提方法依托地基逆合成孔径雷达成像与图像解译技术,构建融合地平坐标系、UNW轨道坐标系和机体坐标系的映射模型,从姿态与特征间映射关系出发,结合傅里叶级数深入目标时序运动建模,利用特征设计细化分类粒度,并引入模糊理论实现小样本下线性阶计算复杂度姿态模糊分类。仿真实验验证了该方法小样本场景不同成像角度与异常干扰下的稳健性。横向对比显示所提方法无需训练,并在实时性和小样本处理能力等方面具有性能提升。
  • 图  1  基于HCS、UNW和BFRF空间目标姿态特征映射模型示意图

    图  2  空间目标三维姿态映射二维及一维特征示意图

    图  3  空间目标关键点标注10点模式示意图

    图  4  可行性验证示意图

    图  5  模糊隶属度变化差值结果

    图  6  准确度横向对比结果

    表  1  特征向量定义(-)

    序号 命名 符号 定义
    1 等多普勒线特征向量 $ {{\boldsymbol{c}}_2} $ $ (0,1) $
    2 横滚特征向量 $ {{\boldsymbol{c}}_1} $ $ \dfrac{{{p_9} - {p_{10}}}}{{\left\| {{p_9} - {p_{10}}} \right\|}} $
    3 俯仰特征向量 $ {{\boldsymbol{c}}_3} $ $ \dfrac{{{p_6} - {p_3}}}{{\left\| {{p_6} - {p_3}} \right\|}} $
    4 偏航特征向量 $ {{\boldsymbol{c}}_4} $ $ \dfrac{{{{\boldsymbol{c}}_2} \times {{\boldsymbol{c}}_3}}}{{\left\| {{{\boldsymbol{c}}_2} \times {{\boldsymbol{c}}_3}} \right\|}} $
    下载: 导出CSV

    表  2  判据定义(-)

    序号判据命名设计特点定义
    1横滚I基于模值$ \left\| {{{\boldsymbol{c}}_2}} \right\| $
    2俯仰I基于模值$ \left\| {{{\boldsymbol{c}}_3}} \right\| $
    3偏航I基于模值$ \left\| {{{\boldsymbol{c}}_4}} \right\| $
    4横滚II基于角度$ {{\boldsymbol{c}}_1} \cdot {{\boldsymbol{c}}_2} $
    5俯仰II基于角度$ {{\boldsymbol{c}}_1} \cdot {{\boldsymbol{c}}_3} $
    6偏航II基于角度$ {{\boldsymbol{c}}_1} \cdot {{\boldsymbol{c}}_4} $
    下载: 导出CSV

    表  3  空间目标姿态模糊分类算法表

     算法1:空间目标姿态模糊分类算法
     输入:GBISAR空间目标关键点坐标序列$ {\boldsymbol{p}} $
     输出:空间目标姿态模糊分类结果$ A $
     1读取坐标$ {({\boldsymbol{x}},{\boldsymbol{y}},{\boldsymbol{z}})^T} $
     2显示空间目标二维点迹$ (r,d) $
     3计算特征向量$ {{\boldsymbol{c}}_i} $
     4展开特征空间
     5计算判据
     6计算模糊隶属度$ {\mu _A}(x) $
     7生成模糊集合$ A $
    下载: 导出CSV

    表  4  空间目标姿态分类方法横向对比

    对比方面模糊分类反演还原特征匹配
    训练数据依赖性无需训练需训练需训练
    适合样本规模小样本中等样本大规模数据库
    适用环境复杂度
    平均计算复杂度$ o(n) $$ o({n^3}) $$ o({n^3}) $
    波动程度
    分类粒度精细精细粗略
    目标自旋角速度能估计能估计能估计
    分类侧重姿态类别三维结构目标型号
    适用范围仅地基地基天基地基天基
    下载: 导出CSV
  • [1] ESA Space Debris Office. ESA’s space environment report 2022[R]. 2022. (查阅网上资料, 未找到本条文献报告编号信息, 请确认并补充).
    [2] JIA Qianlei, XIAO Jiaping, BAI Lu, et al. Space situational awareness systems: Bridging traditional methods and artificial intelligence[J]. Acta Astronautica, 2025, 228: 321–330. doi: 10.1016/j.actaastro.2024.11.025.
    [3] WALKER J L. Range-Doppler imaging of rotating objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 23–52. doi: 10.1109/TAES.1980.308875.
    [4] XU Gang, ZHANG Bangjie, CHEN Jianlai, et al. Sparse inverse synthetic aperture radar imaging using structured low-rank method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5213712. doi: 10.1109/TGRS.2021.3118083.
    [5] ZHU Xiaoxiu, LIU Limin, GUO Baofeng, et al. Coherent compensation and high-resolution technology of multi-band inverse synthetic aperture radar fusion imaging[J]. IET Radar, Sonar & Navigation, 2021, 15(2): 167–180. doi: 10.1049/rsn2.12030.
    [6] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 244–291.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 244–291. (查阅网上资料, 未找到本条文献英文翻译, 请确认).
    [7] TAN Yunxin, LI Guangju, ZHANG Chun, et al. An efficient and accurate ground-based synthetic aperture radar (GB-SAR) real-time imaging scheme based on parallel processing mode and architecture[J]. Electronics, 2024, 13(16): 3138. doi: 10.3390/electronics13163138.
    [8] GOODMAN N A. Dynamic management of digital array resources for radar target tracking[C]. 2024 IEEE Wireless and Microwave Technology Conference (WAMICON), Clearwater, USA, 2024: 1–4. doi: 10.1109/WAMICON60123.2024.10522872.
    [9] 周叶剑. 基于ISAR序列成像的空间目标状态估计方法研究[D]. [博士论文], 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.003406.

    ZHOU Yejian. Study on state estimation techniques of space targets based on ISAR sequential imaging[D]. [Ph. D. dissertation], Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.003406.
    [10] ZHOU Yejian, WEI Shaopeng, ZHANG Lei, et al. Dynamic estimation of spin satellite from the single-station ISAR image sequence with the hidden Markov model[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4626–4638. doi: 10.1109/TAES.2022.3164015.
    [11] ZHANG Yunze, HE Yonghua, and LI Yonggang. Comparison of HRRP-based satellite target identification methods[C]. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Beijing, China, 2022: 125–131. doi: 10.1109/IAEAC54830.2022.9929705.
    [12] LIN Hua, ZENG Chao, ZHANG Hai, et al. Motion parameter estimation of high-speed manoeuvering targets based on hybrid integration and synchrosqueezing transform[J]. IET Radar, Sonar & Navigation, 2022, 16(5): 852–868. doi: 10.1049/rsn2.12225.
    [13] 周叶剑, 马岩, 张磊, 等. 空间目标在轨状态雷达成像估计技术综述[J]. 雷达学报, 2021, 10(4): 607–621. doi: 10.12000/JR21086.

    ZHOU Yejian, MA Yan, ZHANG Lei, et al. Review of on-orbit state estimation of space targets with radar imagery[J]. Journal of Radars, 2021, 10(4): 607–621. doi: 10.12000/JR21086.
    [14] 谢朋飞. 空间目标序列成像的运动几何重建技术研究[D]. 中山大学, 2023. (查阅网上资料, 未找到本条文献信息, 请确认).

    XIE Pengfei. Research on motion geometric reconstruction technology of space target sequence imaging[D]. Sun Yat-sen University, 2023.
    [15] XUE Ruihang, BAI Xueru, CAO Xiangyong, et al. Sequential ISAR target classification based on hybrid transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5111411. doi: 10.1109/TGRS.2022.3155246.
    [16] ZHOU Xuening, BAI Xueru, WANG Li, et al. Robust ISAR target recognition based on ADRISAR-Net[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5494–5505. doi: 10.1109/TAES.2022.3174826.
    [17] XUE Ruihang, BAI Xueru, and ZHOU Feng. SAISAR-Net: A robust sequential adjustment ISAR image classification network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214715. doi: 10.1109/TGRS.2021.3113655.
    [18] YANG Hong, ZHANG Yasheng, and DING Wenzhe. Multiple heterogeneous P-DCNNs ensemble with stacking algorithm: A novel recognition method of space target ISAR images under the condition of small sample set[J]. IEEE Access, 2020, 8: 75543–75570. doi: 10.1109/ACCESS.2020.2989162.
    [19] ZHOU Xuening and BAI Xueru. Robust ISAR target recognition based on IC-STNs[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–5. doi: 10.1109/APSAR46974.2019.9048576.
    [20] LI Xiaobo, YAN Lei, QI Pengfei, et al. Polarimetric imaging via deep learning: A review[J]. Remote Sensing, 2023, 15(6): 1540. doi: 10.3390/rs15061540.
    [21] VOROBEV A V and VOROBEVA G R. Web-based approach to transforming geocentric coordinate systems[J]. Geodesy and Cartography, 2024, 85(3): 30–41. doi: 10.22389/0016-7126-2024-1005-3-30-41. (查阅网上资料,请核对卷号信息).
    [22] 张炜, 张荣之, 王秀红, 等. 星链卫星碰撞威胁及预警策略研究[J]. 载人航天, 2022, 28(5): 606–612. doi: 10.3969/j.issn.1674-5825.2022.05.006.

    ZHANG Wei, ZHANG Rongzhi, WANG Xiuhong, et al. Analysis of collision threat and collision detection strategy of Starlink constellation[J]. Manned Spaceflight, 2022, 28(5): 606–612. doi: 10.3969/j.issn.1674-5825.2022.05.006.
    [23] 蔡立锋, 吴凌九, 张国云, 等. 航天器碰撞规避单脉冲切向控制最优策略[J]. 航天控制, 2023, 41(2): 10–16. doi: 10.3969/j.issn.1006-3242.2023.02.002.

    CAI Lifeng, WU Lingjiu, ZHANG Guoyun, et al. Optimal control strategy of spacecraft tangential collision avoidance with single pulse[J]. Aerospace Control, 2023, 41(2): 10–16. doi: 10.3969/j.issn.1006-3242.2023.02.002.
    [24] GULISTAN M and PEDRYCZ W. Introduction to q-fractional fuzzy set[J]. International Journal of Fuzzy Systems, 2024, 26(5): 1399–1416. doi: 10.1007/s40815-023-01633-8.
    [25] REZAEI A, TALAEIZADEH A, and ALASTY A. Comparing the performance of quaternion, rotation matrix, and Euler Angles based attitude PID controllers for quadrotors[C]. 2024 12th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2024: 492–497. doi: 10.1109/ICRoM64545.2024.10903617.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  25
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-11-13
  • 录用日期:  2025-11-13
  • 网络出版日期:  2025-11-17

目录

    /

    返回文章
    返回