高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

禁飞区约束下的无人机RIS辅助通信网络性能优化

徐俊杰 李斌 杨敬松

徐俊杰, 李斌, 杨敬松. 禁飞区约束下的无人机RIS辅助通信网络性能优化[J]. 电子与信息学报. doi: 10.11999/JEIT250681
引用本文: 徐俊杰, 李斌, 杨敬松. 禁飞区约束下的无人机RIS辅助通信网络性能优化[J]. 电子与信息学报. doi: 10.11999/JEIT250681
XU Junjie, LI Bin, YANG Jingsong. Performance Optimization of UAV-RIS-assisted Communication Networks Under No-Fly Zone Constraints[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250681
Citation: XU Junjie, LI Bin, YANG Jingsong. Performance Optimization of UAV-RIS-assisted Communication Networks Under No-Fly Zone Constraints[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250681

禁飞区约束下的无人机RIS辅助通信网络性能优化

doi: 10.11999/JEIT250681 cstr: 32379.14.JEIT250681
基金项目: 国家自然科学基金(62101277),广西信息功能材料与智能信息处理重点实验室开放课题(XXGN202508)
详细信息
    作者简介:

    徐俊杰:男,硕士生,研究方向为可重构智能表面、无人机通信网络

    李斌:男,副教授,硕士生导师,研究方向为移动边缘计算、无人机通信网络

    杨敬松:男,副教授,研究方向为资源管理与优化

    通讯作者:

    李斌 bin.li@nuist.edu.cn

  • 中图分类号: TN929.5

Performance Optimization of UAV-RIS-assisted Communication Networks Under No-Fly Zone Constraints

Funds: The National Natural Science Foundation of China (62101277), Open Project of Guangxi Key Laboratory of Functional Information Materials and Intelligent Information Processing (XXGN202508)
  • 摘要: 在无人机(UAV)辅助通信网络的实际部署中,禁飞区(NFZs)会收缩可行空域并迫使无人机绕行,致使路径损耗加剧,从而引发通信性能下降。为恢复并增强覆盖,该文将可重构智能表面(RIS)集成于无人机平台并实施协同相位控制以构建可编程反射链路。然而,可重构智能表面的指向性增益对无人机姿态高度敏感,进而影响系统性能。为此,该文提出一种无人机搭载可重构智能表面的新型通信框架,考虑到多禁飞区环境,通过联合优化无人机轨迹、可重构智能表面相移、无人机姿态和基站波束赋形,建立通信速率最大化问题,并提出基于积分路径的完全规避禁飞区方案,在严格绕行禁飞区的同时保障禁飞区内外用户的通信。鉴于该优化问题具有高度复杂性,该文将其构建为马尔可夫决策(MDP)过程,并提出基于软演员-评论家的深度强化学习算法进行求解。仿真结果表明,在保证完全绕行禁飞区的同时,所提方法能够显著提升通信速率,并在可扩展性与稳定性方面优于基线方案。
  • 图  1  系统模型

    图  2  SAC算法训练架构

    图  3  不同算法性能对比

    图  4  UAV轨迹图

    图  5  不同BS天线数量下系统性能比较

    1  本文提出的SAC算法

     (1)初始化环境参数
     (2)初始化评论网络参数、策略网络参数和目标网络参数
     (3) 对每个训练周期执行:
     (4) 对每个环境交互步骤执行:
     (5)  根据当前状态$ {s_{\text{l}}} $从策略分布$ {\pi _\phi }({a_l}|{s_l}) $中采样动作$ {a_l} $
     (6)  观察奖励$ r({s_l},{a_l}) $和下一个状态
     (7)  将转移元组$ ({s_l},{a_l},r({s_l},{a_l}),{s_{l + 1}}) $存入经验回放缓冲区$ \mathcal{D} $
     (8)  结束该环境步循环
     (9) 对每个梯度更新步骤执行:
     (10)  从$ \mathcal{D} $中采样小批次样本
     (11)  计算损失函数$ {L_Q}\left( \omega \right) $和$ {L_\pi }(\phi ) $
     (12)  根据梯度下降公式$ \alpha \leftarrow \alpha - {\lambda _\alpha }{\nabla _\alpha }L(\alpha ) $更新温度参数
     (13)  对目标网络执行软更新$ {\hat \omega _{\text{i}}} \leftarrow {\tau _\pi }{\omega _i} + (1 - {\tau _\pi }){\hat \omega _i} $,
         $\forall i \in \{ 1,2\} $
    下载: 导出CSV
  • [1] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [2] CHENG Nan, WU Shen, WANG Xiucheng, et al. AI for UAV-assisted IoT applications: A comprehensive review[J]. IEEE Internet of Things Journal, 2023, 10(16): 14438–14461. doi: 10.1109/JIOT.2023.3268316.
    [3] 陈发堂, 张若凡. 可重构智能反射面辅助的车联网资源分配算法研究[J]. 通信学报, 2023, 44(9): 70–78. doi: 10.11959/J.ISSN.1000-436x.2023145.

    CHEN Fatang and ZHANG Ruofan. Research on IoV resource allocation algorithm assisted by reconfigurable intelligent surface[J]. Journal on Communications, 2023, 44(9): 70–78. doi: 10.11959/J.ISSN.1000-436x.2023145.
    [4] JIAO Shiyu, FANG Fang, ZHOU Xiaotian, et al. Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA[J]. Journal of Communications and Information Networks, 2020, 5(2): 138–149. doi: 10.23919/JCIN.2020.9130430.
    [5] ESKANDARI M, HUANG Hailong, SAVKIN A V, et al. Model predictive control-based 3D navigation of a RIS-equipped UAV for LoS wireless communication with a ground intelligent vehicle[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2371–2384. doi: 10.1109/TIV.2022.3232890.
    [6] CHENG Xin, LIN Yan, SHI Weiping, et al. Joint optimization for RIS-assisted wireless communications: From physical and electromagnetic perspectives[J]. IEEE Transactions on Communications, 2022, 70(1): 606–620. doi: 10.1109/TCOMM.2021.3120721.
    [7] ZENG Shuhao, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization[J]. IEEE Communications Letters, 2021, 25(1): 269–273. doi: 10.1109/LCOMM.2020.3025345.
    [8] WU Peng, YUAN Xiaopeng, HU Yulin, et al. Trajectory and user assignment design for UAV communication network with no-fly zone[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15820–15825. doi: 10.1109/TVT.2024.3410395.
    [9] LIU Zhenrong, ZENG Yuan, ZHANG Wei, et al. Trajectory design for UAV communications with no-fly zones by deep reinforcement learning[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–5. doi: 10.1109/ICCWorkshops50388.2021.9473572.
    [10] LEE W and LEE K. Robust trajectory and resource allocation for UAV communications in uncertain environments with no-fly zone: A deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 14233–14244. doi: 10.1109/TITS.2024.3399913.
    [11] XU Dongfang, SUN Yan, NG D W K, et al. Multiuser MISO UAV communications in uncertain environments with no-fly zones: Robust trajectory and resource allocation design[J]. IEEE Transactions on Communications, 2020, 68(5): 3153–3172. doi: 10.1109/TCOMM.2020.2970043.
    [12] 王庆, 孙玮, 张程程, 等. 基于深度强化学习的无人机集群通信与网络资源优化调度[J]. 无线电工程, 2024, 54(12): 2942–2949. doi: 10.3969/J.ISSN.1003-3106.2024.12.022.

    WANG Qing, SUN Wei, ZHANG Chengcheng, et al. Optimized scheduling of UAV cluster communication and network resources based on deep reinforcement learning[J]. Radio Engineering, 2024, 54(12): 2942–2949. doi: 10.3969/J.ISSN.1003-3106.2024.12.022.
    [13] JIANG Weiheng, XIONG Peiyun, NIE Jiangtian, et al. Robust design of IRS-aided multi-group multicast system with imperfect CSI[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6314–6328. doi: 10.1109/TWC.2023.3241453.
    [14] GOUDARZI S, SOLEYMANI S A, ANISI M H, et al. Optimizing UAV-assisted vehicular edge computing with age of information: An SAC-based solution[J]. IEEE Internet of Things Journal, 2025, 12(5): 4555–4569. doi: 10.1109/JIOT.2025.3529836.
    [15] 陈真, 杜晓宇, 唐杰, 等. 基于深度强化学习的RIS辅助通感融合网络: 挑战与机遇[J]. 电子与信息学报, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.

    CHEN Zhen, DU Xiaoyu, TANG Jie, et al. DRL-based RIS-assisted ISAC network: Challenges and opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  75
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-10-13
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回