高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合掩码引导与多频域双重注意力机制的急性缺血性脑卒中CT到DWI影像生成模型

张泽华 赵宁 王帅 王璇 郑强

张泽华, 赵宁, 王帅, 王璇, 郑强. 联合掩码引导与多频域双重注意力机制的急性缺血性脑卒中CT到DWI影像生成模型[J]. 电子与信息学报. doi: 10.11999/JEIT250643
引用本文: 张泽华, 赵宁, 王帅, 王璇, 郑强. 联合掩码引导与多频域双重注意力机制的急性缺血性脑卒中CT到DWI影像生成模型[J]. 电子与信息学报. doi: 10.11999/JEIT250643
ZHANG Zehua, ZHAO Ning, WANG Shuai, WANG Xuan, ZHENG Qiang. Joint Mask and Multi-Frequency Dual Attention GAN Network for CT-to-DWI Image Synthesis in Acute Ischemic Stroke[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250643
Citation: ZHANG Zehua, ZHAO Ning, WANG Shuai, WANG Xuan, ZHENG Qiang. Joint Mask and Multi-Frequency Dual Attention GAN Network for CT-to-DWI Image Synthesis in Acute Ischemic Stroke[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250643

联合掩码引导与多频域双重注意力机制的急性缺血性脑卒中CT到DWI影像生成模型

doi: 10.11999/JEIT250643 cstr: 32379.14.JEIT250643
基金项目: 国家自然科学基金(61802330,61802331),山东省自然科学基金(ZR2024MH072),烟台市科技创新发展计划(2023XDRH006),山东省科技型中小企业创新能力提升项目(2023TSGC0878)
详细信息
    作者简介:

    张泽华:男,硕士生,研究方向为医学图像生成

    赵宁:男,硕士生,研究方向为医学图像生成

    王帅:男,讲师,研究方向为医学图像处理

    王璇:女,副教授,研究方向为医学图像处理

    郑强:男,教授 ,研究方向为医学图像处理

    通讯作者:

    郑强 zhengqiang@ytu.edu.cn

  • 中图分类号: TN; TP391

Joint Mask and Multi-Frequency Dual Attention GAN Network for CT-to-DWI Image Synthesis in Acute Ischemic Stroke

Funds: The National Natural Science Foundation of China (61802330, 61802331), The Natural Science Foundation of Shandong Province (ZR2024MH072), The Science and Technology Innovation Development Program of Yantai (2023XDRH006), The Innovation Capacity Enhancement Project for Technology-based SMEs of Shandong Province (2023TSGC0878)
  • 摘要: 基于人工智能的跨模态医学图像生成技术为急性缺血性脑卒中的快速多模态诊疗提供了新的路径。针对现有医学图像生成方法仅依赖图像数据本身的统计特征、忽略医学图像的解剖结构,从而造成病灶模糊和结构偏差问题,该文提出了一种新的联合掩码与多频双重注意力GAN模型,用于急性脑缺血性卒中CT到DWI影像生成。该模型主要包含:(1)掩码引导特征融合模块:通过CT图像与掩码图像的卷积融合,引入解剖结构的空间先验信息,增强脑区及病灶区域的特征表达;(2)多频域注意力编码器:采用离散小波变换分解低频全局特征与高频边缘特征,通过双通路注意力跨尺度融合,减少深层信息的丢失;(3)自适应融合权重模块:结合卷积神经网络与注意力机制,自动学习每个输入特征的自适应权重系数。该研究在临床CT到DWI多模态急性脑缺血性卒中数据集上开展了实验验证,分别在全局尺度采用均方误差、峰值信噪比、结构相似度指数进行评估,在局部尺度基于超像素分割后统计灰度均值相关性进行分析。结果表明,所提模型在各项指标上均优于当前先进方法,对脑区轮廓和病灶区域具有更高的准确性和还原性。
  • 图  1  联合掩码与多频双重注意力GAN模型图

    图  2  掩码引导特征融合模块及掩码生成流程图

    图  3  多频注意力编码器

    图  4  自适应融合权重模块及其频域响应示意图

    图  5  临床数据集1的对比实验结果

    图  6  临床数据集2的对比实验结果

    图  7  关键参数敏感性分析结果

    图  8  临床数据集中DWI图像的超像素分割图

    图  9  各模型在临床数据集的区域灰度相关性结果

    表  1  为评估JMMDA-GAN模型性能使用的两个临床数据集信息

    数据集男性数量女性数量平均年龄训练图像测试图像
    临床数据集1148805862221556
    临床数据集23652706465331634
    下载: 导出CSV

    表  2  临床数据集1的对比实验指标

    方法 MSE↓ MSE p值 PSNR↑ PSNR p值 SSIM↑ SSIM p值
    HisGAN 0.0186±0.0124* 2×10–163 22.84±2.52* 7×10–205 0.540±0.112* 9×10–255
    ARGAN 0.0151±0.0113* 4×10–145 24.02±3.20* 6×10–179 0.752±0.074* 3×10–5
    MedGAN 0.0187±0.0133* 1×10–193 23.14±3.41* 1×10–228 0.713±0.081* 4×10–125
    MultiCycleGAN 0.0240±0.0165* 9×10–217 21.74±2.50* 9×10–240 0.636±0.098* 3×10–247
    ResCycleGAN 0.0344±0.0270* 5×10–232 20.44±2.88* 6×10–245 0.596±0.106* 4×10–254
    本文方法 0.0097±0.0114 - 26.75±4.32 - 0.753±0.101 -
    注:*表示本文方法与其他方法在Wilcoxon符号秩检验中取得显著差异
    下载: 导出CSV

    表  3  临床数据集2的对比实验指标

    方法 MSE↓ MSE p值 PSNR↑ PSNR p值 SSIM↑ SSIM p值
    HisGAN 0.0119±0.0076* 7×10–223 24.69±2.34* 6×10–246 0.642±0.116* 1×10–268
    ARGAN 0.0091±0.0065* 4×10–166 26.06±2.79* 2×10–190 0.825±0.063* 7×10–159
    MedGAN 0.0112±0.0075* 6×10–217 25.12±2.81* 2×10–240 0.796±0.065* 1×10–225
    MultiCycleGAN 0.0131±0.0072* 1×10–243 24.12±2.10* 6×10–260 0.744±0.077* 1×10–263
    ResCycleGAN 0.0283±0.0199* 1×10–260 21.09±2.60* 1×10–265 0.660±0.087* 1×10–268
    本文方法 0.0059±0.0053 - 28.12±2.85 - 0.844±0.072 -
    注:*表示JMMDA-GAN模型与其他方法在Wilcoxon符号秩检验中取得显著差异
    下载: 导出CSV

    表  4  跨中心泛化实验指标(临床数据集1训练、临床数据集2测试)

    方法 MSE↓ MSE p值 PSNR↑ PSNR p值 SSIM↑ SSIM p值
    HisGAN 0.0337±0.0209* 3×10–137 20.24±2.57* 3×10–174 0.601±0.112* 3×10–106
    ARGAN 0.0296±0.0170* 1×10–181 20.66±2.25* 7×10–220 0.611±0.089* 2×10–218
    MedGAN 0.0313±0.0206* 4×10–146 20.54±2.45* 5×10–190 0.625±0.074* 4×10–158
    MultiCycleGAN 0.0462±0.0273* 7×10–256 18.82±2.44* 3×10–263 0.556±0.085* 9×10–263
    ResCycleGAN 0.0345±0.0240* 1×10–160 20.19±2.56* 1×10–193 0.618±0.079* 5×10–154
    本文方法 0.0155±0.0154 - 24.17±3.12 - 0.678±0.073 -
    下载: 导出CSV

    表  5  跨中心泛化实验指标(临床数据集2训练、临床数据集1测试)

    方法 MSE↓ MSE p值 PSNR↑ PSNR p值 SSIM↑ SSIM p值
    HisGAN 0.0313±0.0211* 1×10–174 20.55±2.43* 1×10–205 0.480±0.115* 4×10–251
    ARGAN 0.0313±0.0224* 3×10–184 20.66±2.59* 1×10–215 0.615±0.090* 2×10–236
    MedGAN 0.0294±0.0211* 1×10–170 20.88±2.49* 2×10–205 0.620±0.084* 6×10–225
    MultiCycleGAN 0.0356±0.0242* 2×10–224 20.02±2.46* 7×10–240 0.578±0.092* 5×10–253
    ResCycleGAN 0.0394±0.0300* 7×10–210 19.82±2.88* 1×10–224 0.585±0.100* 1×10–238
    本文方法 0.0161±0.0153 - 23.96±3.10 - 0.681±0.084 -
    下载: 导出CSV

    表  6  多中心混合数据集的对比实验指标

    方法MSE↓MSE p值PSNR↑PSNR p值SSIM↑SSIM p值
    HisGAN0.0156±0.0116*< 0.00123.68±2.59*< 0.0010.592±0.125*< 0.001
    ARGAN0.0121±0.0095*1E-30224.95±2.97*< 0.0010.786±0.075*3E-77
    MedGAN0.0153±0.0111*< 0.00123.91±3.09*< 0.0010.748±0.079*< 0.001
    MultiCycleGAN0.0255±0.0187*< 0.00121.50±2.49*< 0.0010.660±0.103*< 0.001
    ResCycleGAN0.0321±0.0240*< 0.00120.63±2.74*< 0.0010.623±0.105*< 0.001
    本文方法0.0077±0.0080-27.22±3.34-0.794±0.098-
    注:p<0.001表示p值远小于统计软件或数值精度的下限(如<1E-300)。
    下载: 导出CSV

    表  7  消融实验指标

    方法 MSE↓ MSE p值 PSNR↑ PSNR p值 SSIM↑ SSIM p值
    Pix2PixHD 0.00969±0.0066* 8×10–191 25.78±3.00* 1×10–206 0.813±0.084* 9×10–239
    Pix2PixHD+MGFF 0.00681±0.0060* 2×10–55 27.41±2.78* 6×10–69 0.830±0.069* 2×10–168
    Pix2PixHD+MFAB 0.00809±0.0058* 2×10–137 26.62±3.02* 1×10–153 0.831±0.077* 1×10–143
    本文方法 0.00585±0.0053 - 28.12±2.85 - 0.844±0.072 -
    下载: 导出CSV
  • [1] ZHANG Xuting, ZHONG Wansi, XUE Rui, et al. Argatroban in patients with acute ischemic stroke with early neurological deterioration: A randomized clinical trial[J]. JAMA Neurology, 2024, 81(2): 118–125. doi: 10.1001/jamaneurol.2023.5093.
    [2] VANDE VYVERE T, PISICĂ D, WILMS G, et al. Imaging findings in acute traumatic brain injury: A national institute of neurological disorders and stroke common data element-based pictorial review and analysis of over 4000 admission brain computed tomography scans from the collaborative European NeuroTrauma effectiveness research in traumatic brain injury (CENTER-TBI) study[J]. Journal of Neurotrauma, 2024, 41(19/20): 2248–2297. doi: 10.1089/neu.2023.0553.
    [3] ELSHERIF S, LEGERE B, MOHAMED A, et al. Beyond conventional imaging: A systematic review and meta-analysis assessing the impact of computed tomography perfusion on ischemic stroke outcomes in the late window[J]. International Journal of Stroke, 2025, 20(3): 278–288. doi: 10.1177/17474930241292915.
    [4] RAPILLO C M, DUNET V, PISTOCCHI S, et al. Moving from CT to MRI paradigm in acute ischemic stroke: Feasibility, effects on stroke diagnosis and long-term outcomes[J]. Stroke, 2024, 55(5): 1329–1338. doi: 10.1161/strokeaha.123.045154.
    [5] GHEBREHIWET I, ZAKI N, DAMSEH R, et al. Revolutionizing personalized medicine with generative AI: A systematic review[J]. Artificial Intelligence Review, 2024, 57(5): 128. doi: 10.1007/s10462-024-10768-5.
    [6] SHURRAB S, GUERRA-MANZANARES A, MAGID A, et al. Multimodal machine learning for stroke prognosis and diagnosis: A systematic review[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(11): 6958–6973. doi: 10.1109/jbhi.2024.3448238.
    [7] ARMANIOUS K, JIANG Chenming, FISCHER M, et al. MedGAN: Medical image translation using GANs[J]. Computerized Medical Imaging and Graphics, 2020, 79: 101684. doi: 10.1016/j.compmedimag.2019.101684.
    [8] EKANAYAKE M, PAWAR K, HARANDI M, et al. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction[J]. Computers in Biology and Medicine, 2024, 168: 107775. doi: 10.1016/j.compbiomed.2023.107775.
    [9] DALMAZ O, YURT M, and ÇUKUR T. ResViT: Residual vision transformers for multimodal medical image synthesis[J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2598–2614. doi: 10.1109/tmi.2022.3167808.
    [10] ÖZBEY M, DALMAZ O, DAR S U H, et al. Unsupervised medical image translation with adversarial diffusion models[J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3524–3539. doi: 10.1109/tmi.2023.3290149.
    [11] LUO Yu, ZHANG Shaowei, LING Jie, et al. Mask-guided generative adversarial network for MRI-based CT synthesis[J]. Knowledge-Based Systems, 2024, 295: 111799. doi: 10.1016/j.knosys.2024.111799.
    [12] YANG Linlin, SHANGGUAN Hong, ZHANG Xiong, et al. High-frequency sensitive generative adversarial network for low-dose CT image denoising[J]. IEEE Access, 2020, 8: 930–943. doi: 10.1109/access.2019.2961983.
    [13] HUTCHINSON E B, AVRAM A V, IRFANOGLU M O, et al. Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models[J]. Magnetic Resonance in Medicine, 2017, 78(5): 1767–1780. doi: 10.1002/mrm.26575.
    [14] DAS S and KUNDU M K. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency[J]. Medical & Biological Engineering & Computing, 2012, 50(10): 1105–1114. doi: 10.1007/s11517-012-0943-3.
    [15] 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.

    ZHOU Tao, LIU Yuncan, LU Huiling, et al. ResNet and its application to medical image processing: Research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.
    [16] BARRON J T. A general and adaptive robust loss function[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4326–4334. doi: 10.1109/CVPR.2019.00446.
    [17] LUO Jialin, DAI Peishan, HE Zhuang, et al. Deep learning models for ischemic stroke lesion segmentation in medical images: A survey[J]. Computers in Biology and Medicine, 2024, 175: 108509. doi: 10.1016/j.compbiomed.2024.108509.
    [18] WANG Tingchun, LIU Mingyu, ZHU Junyan, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8798–8807. doi: 10.1109/CVPR.2018.00917.
    [19] LIU Rui, DING Xiaoxi, SHAO Yimin, et al. An interpretable multiplication-convolution residual network for equipment fault diagnosis via time–frequency filtering[J]. Advanced Engineering Informatics, 2024, 60: 102421. doi: 10.1016/j.aei.2024.102421.
    [20] LI Yihao, EL HABIB DAHO M, CONZE P H, et al. A review of deep learning-based information fusion techniques for multimodal medical image classification[J]. Computers in Biology and Medicine, 2024, 177: 108635. doi: 10.1016/j.compbiomed.2024.108635.
    [21] PENG Yanjun, SUN Jindong, REN Yande, et al. A histogram-driven generative adversarial network for brain MRI to CT synthesis[J]. Knowledge-Based Systems, 2023, 277: 110802. doi: 10.1016/j.knosys.2023.110802.
    [22] LIU Yanxia, CHEN Anni, SHI Hongyu, et al. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy[J]. Computerized Medical Imaging and Graphics, 2021, 91: 101953. doi: 10.1016/j.compmedimag.2021.101953.
    [23] DAI Xianjin, LEI Yang, LIU Yingzi, et al. Intensity non-uniformity correction in MR imaging using residual cycle generative adversarial network[J]. Physics in Medicine & Biology, 2020, 65(21): 215025. doi: 10.1088/1361-6560/abb31f.
    [24] DING Bin, LONG Chengjiang, ZHANG Ling, et al. ARGAN: Attentive recurrent generative adversarial network for shadow detection and removal[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 10212–10221. doi: 10.1109/ICCV.2019.01031.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回