高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯粒集成芯片架构-封装协同设计

卢美璇 许浩博 王颖 王梦迪 韩银和

卢美璇, 许浩博, 王颖, 王梦迪, 韩银和. 芯粒集成芯片架构-封装协同设计[J]. 电子与信息学报. doi: 10.11999/JEIT250626
引用本文: 卢美璇, 许浩博, 王颖, 王梦迪, 韩银和. 芯粒集成芯片架构-封装协同设计[J]. 电子与信息学报. doi: 10.11999/JEIT250626
LU Meixuan, XU Haobo, WANG Ying, WANG Mengdi, HAN Yinhe. Co-design of Architecture and Packaging in Chiplet[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250626
Citation: LU Meixuan, XU Haobo, WANG Ying, WANG Mengdi, HAN Yinhe. Co-design of Architecture and Packaging in Chiplet[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250626

芯粒集成芯片架构-封装协同设计

doi: 10.11999/JEIT250626 cstr: 32379.14.JEIT250626
基金项目: 国家自然科学基金(62025404, 62495104)
详细信息
    作者简介:

    卢美璇:女,博士生,研究方向为芯粒集成芯片设计

    许浩博:男,副研究员,研究方向为计算机系统结构,专用处理器芯片

    王颖:男,研究员,研究方向为专用处理器体系结构,集成芯片系统

    王梦迪:女,助理研究员,研究方向为领域专用加速器架构设计,芯粒集成

    韩银和:男,研究员,研究方向为计算机体系结构和芯片,智能机器人,智能硬件,数据计算芯片和计算系统

    通讯作者:

    韩银和 yinhes@ict.ac.cn

  • 中图分类号: TN4

Co-design of Architecture and Packaging in Chiplet

Funds: The National Natural Science Foundation of China (62025404, 62495104)
  • 摘要: 芯粒集成技术凭借封装集成的可扩展性,成为后摩尔时代算力拓展的有效途径。然而,芯粒集成芯片架构与封装的紧密耦合导致复杂的多目标权衡问题,同时体积集成密度的提高加剧了可靠性挑战,仅依靠封装层面设计难以解决,传统架构与封装分离的设计范式失效,架构-封装协同设计成为保障芯粒集成芯片性能与可靠性的必要手段。该工作总结芯粒集成驱动的新兴架构特征,梳理芯粒集成芯片架构与封装的紧密耦合关系,阐明协同设计的必要性;理清架构层与封装层核心设计要素对系统关键指标的影响机制,在此基础上定义架构层和封装层协同界面;最后结合已有工作提出架构-封装协同设计的关键组成和协同方法。
  • 图  1  芯粒集成芯片“DI-DA”设计模式

    图  2  芯粒集成技术和架构演变

    图  3  2D(a,b)及2.5D(c)芯粒集成芯片及架构示意图

    图  4  3D芯粒集成芯片及架构示意图

    图  5  3.5D芯粒集成芯片及架构示意图

    图  5  3.5D芯粒集成芯片及架构示意图

    图  6  芯粒集成芯片热力电耦合示意图

    表  1  芯粒集成技术对比与典型芯片

    集成
    方式
    特点 主要参数 典型芯片
    线距
    (μm)
    凸块间距
    (μm)
    功耗
    (pJ/bit)
    归一化
    成本
    2D 有机基板互连。成本低,可靠性高,面积扩展性好;互连密度低 ~10 ~100 ~1.7 1 AMD EPYCTM, RyzenTM [4], Nvidia Simba [11]
    2.5D 硅等中介层互连。互连密度较高;面积受限,成本高,可靠性问题 <4 ~50 ~0.5 1.5~(>3)[9] Instinct MI200 series[5], Intel FGPA[15], 华为Kunpeng 920[16], Intel Meteor Lake[17], Intel Sapphire Rapids(SPR)[18], Occamy[19], Manticore[20], Centaur[21], AMD RadeonTM R9 Fury X[28]
    3D 垂直堆叠,硅通孔互连。互连密度高,延时、功耗低;成本高,可靠性问题显著 <2 ~40 ~0.15 >3[9,26,27] IntAct[14], HBM[25](商用芯片常见[2931]), Intel Lakefield[32], SHINSAI[33], Lu等人[34], 华为 Ascend910[35], AMD V-Cache[36], Niu等人[37], Samsung HBM2-PIM[38]
    3.5D 2.5D和3D结合。水平垂直互连协同设计,灵活性强;成本高,可靠性问题显著 <1 ~40 <0.1 >3[42] Intel PVC[43], AMD InstinctTM
    MI300 series [41,44]
    下载: 导出CSV

    表  2  典型架构封装协同设计工作设计空间探索方法总结

    协同方法组成分类细分类型或使用范围典型工作(及算法)
    设计空间描述参数和功能模型-文献[56,58,62,64,66,68,69]
    详细设计描述文件-文献[51,57,63,67]
    空间探索方法有限设计点架构层文献[55,62,56,64,66,68]
    封装层文献[64,68]
    迭代优化架构层功能级分解组合文献[58,69](启发式),文献[56](数学建模法)
    架构层网表级分解组合文献[51,57,67](启发式),文献[63](数学建模法)
    封装层文献[51,56,58,62,63,69](启发式),
    文献[57,62,66,67](数学建模法)
    评估指标可靠性考量文献[56,62,66]
    文献[57,64,66,63]
    文献[55,6668]
    无可靠性考量-文献[58,69]
    评估方法解析模型系统级性能、面积、功耗、成本等文献[5658,62,64,69]
    封装层时序、温度、应力文献[5758,62]
    模拟模型系统级性能、面积、功耗、成本等文献[56,57,6264,66,67,69]
    封装层时序、温度文献[51,56,62,63,6668]
    下载: 导出CSV
  • [1] ESMAEILZADEH H, BLEM E, AMANT R S, et al. Dark silicon and the end of multicore scaling[C]. Proceedings of the 2011 38th Annual International Symposium on Computer Architecture, San Jose, USA, 2011: 365–376. (查阅网上资料, 未找到doi信息, 请确认).
    [2] HRUSKA J. As chip design costs skyrocket, 3nm process node is in jeopardy[EB/OL]. https://www.extremetech.com/computing/272096-3nm-process-node, 2018.
    [3] LAU J H. Semiconductor Advanced Packaging[M]. Singapore: Springer, 2021: 1–25. doi: 10.1007/978-981-16-1376-0.
    [4] NAFFZIGER S, BECK N, BURD T, et al. Pioneering chiplet technology and design for the AMD EPYC™ and Ryzen™ processor families: Industrial product[C]. Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2021: 57–70. doi: 10.1109/ISCA52012.2021.00014.
    [5] AMD. AMD instinct™ GPUs[EB/OL]. https://www.amd.com/en/products/accelerators/instinct.html, 2025.
    [6] HAN Yinhe, XU Haobo, LU Meixuan, et al. The big chip: Challenge, model and architecture[J]. Fundamental Research, 2024, 4(6): 1431–1441. doi: 10.1016/j.fmre.2023.10.020.
    [7] Intel. Tick/tock development model[EB/OL]. https://retailedge.intel.com/content/pdf/asmo/201303art_computerpoweruser.pdf, 2025.(查阅网上资料,未找到年份信息,请确认).
    [8] WONG C P and WONG M M. Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics[J]. IEEE Transactions on Components and Packaging Technologies, 1999, 22(1): 21–25. doi: 10.1109/6144.759349.
    [9] RADOJCIC R. More-Than-Moore 2.5D and 3D SiP Integration[M]. Cham: Springer, 2017. doi: 10.1007/978-3-319-52548-Proceedings of.
    [10] SHEIKH F, NAGISETTY R, KARNIK T, et al. 2.5 D and 3D heterogeneous integration: Emerging applications[J]. IEEE Solid-State Circuits Magazine, 2021, 13(4): 77–87. doi: 10.1109/MSSC.2021.3111386.
    [11] ZIMMER B, VENKATESAN R, SHAO Y S, et al. A 0.32–128 TOPS, scalable multi-chip-module-based deep neural network inference accelerator with ground-referenced signaling in 16 nm[J]. IEEE Journal of Solid-State Circuits, 2020, 55(4): 920–932. doi: 10.1109/JSSC.2019.2960488.
    [12] MAHAJAN R, SANKMAN R, PATEL N, et al. Embedded multi-die interconnect bridge (EMIB)--a high density, high bandwidth packaging interconnect[C]. Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, USA, 2016: 557–565. doi: 10.1109/ECTC.2016.201.
    [13] CHEN W C, HU C, TING K C, et al. Wafer level integration of an advanced logic-memory system through 2nd generation CoWoS® technology[C]. Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 2017: T54–T55. doi: 10.23919/VLSIT.2017.7998198.
    [14] VIVET P, GUTHMULLER E, THONNART Y, et al. IntAct: A 96-core processor with six chiplets 3D-stacked on an active interposer with distributed interconnects and integrated power management[J]. IEEE Journal of Solid-State Circuits, 2021, 56(1): 79–97. doi: 10.1109/JSSC.2020.3036341.
    [15] GREENHILL D, HO R, LEWIS D, et al. 3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration[C]. Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2017: 54–55. doi: 10.1109/ISSCC.2017.7870257.
    [16] XIA Jing, CHENG Chuanning, ZHOU Xiping, et al. Kunpeng 920: The first 7-nm chiplet-based 64-core ARM SoC for cloud services[J]. IEEE Micro, 2021, 41(5): 67–75. doi: 10.1109/MM.2021.3085578.
    [17] GOMES W, MORGAN S, PHELPS B, et al. Meteor lake and arrow lake Intel next-gen 3D client architecture platform with foveros[C]. Proceedings of the 2022 IEEE Hot Chips 34 Symposium (HCS), Cupertino, USA, 2022: 1–40. doi: 10.1109/HCS55958.2022.9895532.
    [18] NASSIF N, MUNCH A O, MOLNAR C L, et al. Sapphire rapids: The next-generation Intel Xeon scalable processor[C]. Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2022: 44–46. doi: 10.1109/ISSCC42614.2022.9731107.
    [19] SCHEFFLER P, BENZ T, POTOCNIK V, et al. Occamy: A 432-core dual-chiplet dual-HBM2E 768-DP-GFLOP/s RISC-V system for 8-to-64-bit dense and sparse computing in 12-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 2025, 60(4): 1324–1338. doi: 10.1109/JSSC.2025.3529249.
    [20] ZARUBA F, SCHUIKI F, and BENINI L. Manticore: A 4096-core RISC-V chiplet architecture for ultraefficient floating-point computing[J]. IEEE Micro, 2021, 41(2): 36–42. doi: 10.1109/MM.2020.3045564.
    [21] HWANG R, KIM T, KWON Y, et al. Centaur: A chiplet-based, hybrid sparse-dense accelerator for personalized recommendations[C]. Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2020: 968–981. doi: 10.1109/ISCA45697.2020.00083.
    [22] ZHOU Minghao, LI Li, HOU Fengze, et al. Thermal modeling of a chiplet-based packaging with a 2.5-D through-silicon via interposer[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(6): 956–963. doi: 10.1109/TCPMT.2022.3174608.
    [23] ZHANG Yang, SARVEY T E, and BAKIR M S. Thermal evaluation of 2.5-D integration using bridge-chip technology: Challenges and opportunities[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(7): 1101–1110. doi: 10.1109/TCPMT.2017.2710042.
    [24] INGERLY D B, AMIN S, ARYASOMAYAJULA L, et al. Foveros: 3D integration and the use of face-to-face chip stacking for logic devices[C]. Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019: 19.6. 1–19.6. 4. doi: 10.1109/IEDM19573.2019.8993637.
    [25] SK hynix. Ultimate DRAM for new horizons of high-end memory[EB/OL]. https://product.skhynix.com/products/dram/hbm/hbm3.go, 2025.
    [26] STOW D, AKGUN I, BARNES R, et al. Cost and thermal analysis of high-performance 2.5D and 3D integrated circuit design space[C]. Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016: 637–642. doi: 10.1109/ISVLSI.2016.133.
    [27] VELENIS D, DETALLE M, CIVALE Y, et al. Cost comparison between 3D and 2.5D integration[C]. Proceedings of the 2012 4th Electronic System-Integration Technology Conference, Amsterdam, Netherlands, 2012: 1–4. doi: 10.1109/ESTC.2012.6542130.
    [28] MACRI J. AMD's next generation GPU and high bandwidth memory architecture: FURY[C]. Proceedings of the 2015 IEEE Hot Chips 27 Symposium (HCS), Cupertino, USA, 2015: 1–26. doi: 10.1109/HOTCHIPS.2015.7477461.
    [29] NVIDIA. NVIDIA tesla V100[EB/OL]. https://www.nvidia.com/en-gb/data-center/tesla-v100/, 2025.
    [30] NVIDIA. NVIDIA A100 tensor core GPU[EB/OL]. https://www.nvidia.com/en-us/data-center/a100/, 2020.
    [31] NVIDIA. NVIDIA H100 tensor core GPU[EB/OL]. https://www.nvidia.com/en-us/data-center/h100/, 2020.(查阅网上资料,本条文献与第30条文献重复,请确认).
    [32] GOMES W, KHUSHU S, INGERLY D B, et al. 8.1 Lakefield and mobility compute: A 3D stacked 10nm and 22FFL hybrid processor system in 12×12mm2, 1mm package-on-package[C]. Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, USA, 2020: 144–146. doi: 10.1109/ISSCC19947.2020.9062957.
    [33] JIAO Bo, ZHU Haozhe, ZENG Yuman, et al. 37.4 SHINSAI: A 586mm2 reusable active TSV interposer with programmable interconnect fabric and 512Mb 3D underdeck memory[C]. Proceedings of the 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2025, 68: 1–3. doi: 10.1109/ISSCC49661.2025.10904819.
    [34] LU Wei, ZHANG Jie, WEI Yihui, et al. Scalable Embedded Multi-Die Active Bridge (S-EMAB) chips with integrated LDOs for low-cost programmable 2.5D/3.5D packaging technology[C]. Proceedings of the 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, USA, 2024: 1–2. doi: 10.1109/VLSITechnologyandCir46783.2024.10631526.
    [35] LIAO Heng, TU Jiajin, XIA Jing, et al. Ascend: A scalable and unified architecture for ubiquitous deep neural network computing: Industry track paper[C]. Proceedings of the 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea, 2021: 789–801. doi: 10.1109/HPCA51647.2021.00071.
    [36] WUU J, AGARWAL R, CIRAULA M, et al. 3D V-cache: The implementation of a hybrid-bonded 64MB stacked cache for a 7nm x86–64 CPU[C]. Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2022: 428–429. doi: 10.1109/ISSCC42614.2022.9731565.
    [37] NIU Dimin, LI Shuangchen, WANG Yuhao, et al. 184QPS/W 64Mb/mm23D logic-to-DRAM hybrid bonding with process-near-memory engine for recommendation system[C]. Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2022, 65: 1–3. doi: 10.1109/ISSCC42614.2022.9731694.
    [38] KIM J H, KANG S H, LEE S, et al. Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML accelerators and beyond[C]. Proceedings of the 2021 IEEE Hot Chips 33 Symposium (HCS), Palo Alto, USA, 2021: 1–26. doi: 10.1109/HCS52781.2021.9567191.
    [39] FANG E J W, SHIH T C J, and HUANG D S Y. IR to routing challenge and solution for interposer-based design[C]. Proceedings of the 20th Asia and South Pacific Design Automation Conference, Chiba, Japan, 2015: 226–230. doi: 10.1109/ASPDAC.2015.7059009.
    [40] LEE I, NAM S, KIM S, et al. Extremely large 3.5D heterogeneous integration for the next-generation packaging technology[C]. Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, USA, 2023: 893–898. doi: 10.1109/ECTC51909.2023.00154.
    [41] MANDALAPU C S, BUCH C, SHAH P, et al. 3.5D advanced packaging enabling heterogenous integration of HPC and AI accelerators[C]. Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, USA, 2024: 798–802. doi: 10.1109/ECTC51529.2024.00391.
    [42] BOBBA S, GAILLARDON P E, SEICULESCU C, et al. 3.5-D integration: A case study[C]. Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 2087–2090. doi: 10.1109/ISCAS.2013.6572285.
    [43] GOMES W, KOKER A, STOVER P, et al. Ponte Vecchio: A multi-tile 3D stacked processor for exascale computing[C]. Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2022: 42–44. doi: 10.1109/ISSCC42614.2022.9731673.
    [44] SMITH A, CHAPMAN E, PATEL C, et al. 11.1 AMD InstinctTM MI300 series modular chiplet package–HPC and AI accelerator for exa-class systems[C]. Proceedings of the 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2024, 67: 490–492. doi: 10.1109/ISSCC49657.2024.10454441.
    [45] JUNG M, PAN D Z, and LIM S K. Chip/package co-analysis of thermo-mechanical stress and reliability in TSV-based 3D ICs[C]. Proceedings of the 49th Annual Design Automation Conference, San Francisco, USA, 2012: 317–326. Doi: 10.1145/2228360.2228419.
    [46] MA Yenai, DELSHADTEHRANI L, DEMIRKIRAN C, et al. TAP-2.5D: A thermally-aware chiplet placement methodology for 2.5D systems[C]. Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021: 1246–1251. doi: 10.23919/DATE51398.2021.9474011.
    [47] HUANG Wei, GHOSH S, VELUSAMY S, et al. HotSpot: A compact thermal modeling methodology for early-stage VLSI design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14(5): 501–513. doi: 10.1109/TVLSI.2006.876103.
    [48] MA Xiaoning, XU Qinzhi, WANG Chenghan, et al. An electrical-thermal co-simulation model of chiplet heterogeneous integration systems[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(10): 1769–1781. doi: 10.1109/TVLSI.2024.3430498.
    [49] JUNG M, MITRA J, PAN D Z, et al. TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC[C]. Proceedings of the 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), San Diego, USA, 2011: 188–193.
    [50] SHIH M K, LAI Weihong, LIAO T, et al. Thermal and mechanical characterization of 2.5-D and fan-out chip on substrate chip-first and chip-last packages[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 297–305. doi: 10.1109/TCPMT.2022.3145377.
    [51] KABIR M D A, PETRANOVIC D, and PENG Yarui. Cross-boundary inductive timing optimization for 2.5D chiplet-package co-design[C]. Proceedings of the 2021 Great Lakes Symposium on VLSI, 2021: 135–140. doi: 10.1145/3453688.3461505.(查阅网上资料,未找到出版地信息,请确认补充).
    [52] PAK J, PATHAK M, LIM S K, et al. Modeling of electromigration in through-silicon-via based 3D IC[C]. Proceedings of the 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, USA, 2011: 1420–1427. doi: 10.1109/ECTC.2011.5898698.
    [53] KOTHARI G and GHOSE K. Thermally-aware multi-core chiplet stacking[C]. Proceedings of the 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, USA, 2023: 1–9. doi: 10.1109/ICCAD57390.2023.10323991.
    [54] ERIS F, JOSHI A, KAHNG A B, et al. Leveraging thermally-aware chiplet organization in 2.5D systems to reclaim dark silicon[C]. Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2018: 1441–1446. doi: 10.23919/DATE.2018.8342238.
    [55] ZHI Changle, DONG Gang, YANG Deguang, et al. Electrical and thermal characteristics optimization in interposer-based 2.5-D integrated circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(3): 627–637. doi: 10.1109/TVLSI.2024.3478846.
    [56] LI Fuping, WANG Ying, CHENG Yuanqing, et al. GIA: A reusable general interposer architecture for agile chiplet integration[C]. Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, San Diego, USA, 2022: 42. doi: 10.1145/3508352.3549464.
    [57] CHEN Shixin, LI Shanyi, ZHUANG Zhen, et al. Floorplet: Performance-aware floorplan framework for chiplet integration[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(6): 1638–1649. doi: 10.1109/TCAD.2023.3347302.
    [58] LI Fuping, WANG Ying, WANG Yujie, et al. Chipletizer: Repartitioning SoCs for cost-effective chiplet integration[C]. Proceedings of the 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC), Incheon, South Korea, 2024: 58–64. doi: 10.1109/ASP-DAC58780.2024.10473888.
    [59] WANG Chenghan, XU Qinzhi, NIE Chuanjun, et al. An efficient thermal model of chiplet heterogeneous integration system for steady-state temperature prediction[J]. Microelectronics Reliability, 2023, 146: 115006. doi: 10.1016/j.microrel.2023.115006.
    [60] MALLYA N B, STRIKOS P, GOEL B, et al. A performance analysis of chiplet-based systems[C]. Proceedings of the 2025 Design, Automation & Test in Europe Conference (DATE), Lyon, France, 2025: 1–7. doi: 10.23919/DATE64628.2025.10992969.
    [61] NIE Chuanjun, XU Qinzhi, WANG Chenghan, et al. Efficient transient thermal analysis of chiplet heterogeneous integration[J]. Applied Thermal Engineering, 2023, 229: 120609. doi: 10.1016/j.applthermaleng.2023.120609.
    [62] COSKUN A, ERIS F, JOSHI A, et al. Cross-layer co-optimization of network design and chiplet placement in 2.5-D systems[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 5183–5196. doi: 10.1109/TCAD.2020.2970019.
    [63] KABIR M D A and PENG Yarui. Chiplet-package co-design for 2.5D systems using standard ASIC CAD tools[C]. Proceedings of the 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 2020: 351–356. doi: 10.1109/ASP-DAC47756.2020.9045734.
    [64] IFF P, BRUGGMANN B, BESTA M, et al. Rapidchiplet: A toolchain for rapid design space exploration of inter-chiplet interconnects[C]. Proceedings of the of the 22nd ACM International Conference on Computing Frontiers, Cagliari, Italy, 2025: 168–171. doi: 10.1145/3719276.3725170.
    [65] LI Fuping, WANG Ying, LU Meixuan, et al. The decomposition and combination paradigms of chiplet-based integrated chips[J]. Integrated Circuits and Systems, 2024, 1(1): 18–30. doi: 10.23919/ICS.2024.3451428.
    [66] PARK H, KIM J, CHEKURI V C K, et al. Design flow for active interposer-based 2.5-D ICs and study of RISC-V architecture with secure NoC[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(12): 2047–2060. doi: 10.1109/TCPMT.2020.3033136.
    [67] KIM J, MURALI G, PARK H, et al. Architecture, chip, and package co-design flow for 2.5D IC design enabling heterogeneous IP reuse[C]. Proceedings of the 56th Annual Design Automation Conference, Las Vegas, USA, 2019: 178. doi: 10.1145/3316781.3317775.
    [68] NASRULLAH J, LUO Zhiquan, and TAYLOR G. Designing software configurable chips and SIPs using chiplets and zGlue[C]. Proceedings of the 52nd International Symposium on Microelectronics, Boston, USA, 2019: 27–32. doi: 10.4071/2380-4505-2019.1.000027. (查阅网上资料,不确定页码是否正确,请确认).
    [69] IFF P, BRUGGMANN B, BESTA M, et al. PlaceIT: Placement-based inter-chiplet interconnect topologies[EB/OL]. https://arxiv.org/abs/2502.01449, 2025.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-03
  • 修回日期:  2025-09-14
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回