高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多干扰环境下车载毫米波雷达干扰抑制算法研究

谭浩楠 董玫 陈伯孝

谭浩楠, 董玫, 陈伯孝. 多干扰环境下车载毫米波雷达干扰抑制算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250617
引用本文: 谭浩楠, 董玫, 陈伯孝. 多干扰环境下车载毫米波雷达干扰抑制算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250617
TAN Haonan, DONG Mei, CHEN Boxiao. The Research on Interference Suppression Algorithms for Millimeter-Wave Radar in Multi-Interference Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250617
Citation: TAN Haonan, DONG Mei, CHEN Boxiao. The Research on Interference Suppression Algorithms for Millimeter-Wave Radar in Multi-Interference Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250617

多干扰环境下车载毫米波雷达干扰抑制算法研究

doi: 10.11999/JEIT250617 cstr: 32379.14.JEIT250617
基金项目: 国家自然科学基金(62271367)
详细信息
    作者简介:

    谭浩楠:男,硕士生,研究方向为雷达信号处理

    董玫:女,副教授,研究方向为雷达信号处理

    陈伯孝:男,教授,研究方向为雷达信号处理

    通讯作者:

    董玫 dmei2006@xidian.edu.cn

  • 中图分类号: TN951

The Research on Interference Suppression Algorithms for Millimeter-Wave Radar in Multi-Interference Environments

Funds: National Natural Science Foundation of China (62271367)
  • 摘要: 随着毫米波雷达在智能驾驶领域的广泛应用,雷达间的相互干扰问题日益凸显。干扰在时域表现为尖锐脉冲及频域本底噪声的显著升高,严重影响目标信息的获取,威胁道路交通安全。随着干扰雷达数量的增多,采用置零或插值的传统方法已无法有效抑制多干扰。为解决这一问题,该文提出了一种基于信号时域特征的联合包络修复信号重构算法,算法包括干扰区域检测与信号重构2个关键环节,首先通过干扰包络检测与包络内变换点检测的双重判据机制,提升了多干扰环境下干扰与干扰间片段有用信号检测准确性,使得干扰区域内的信号重构不仅可以利用无干扰区域有用信号也可以利用较短区域的片段有用信号。为了克服片段有用信号预测带来的信号幅度发散问题,利用希尔伯特变换对重构出的信号包络幅度协同归一化处理,使得重构出的信号更加整体连续,提升了信号重构精度。实验结果表明,当输入信干噪比(SINR)大于等于–10 dB时,输出SINR可达10 dB以上、较对比算法提升3~5 dB,且算法在实测数据中得到良好验证。
  • 图  1  典型多干扰道路场景图

    图  2  有无干扰信号的频域波形对比

    图  3  有无干扰信号的时域波形对比

    图  4  联合包络修复的信号重构算法流程图

    图  5  干扰包络检测图解

    图  6  干扰信号分区示例

    图  7  实验装置摆放示意图

    图  8  单干扰算法检测结果

    图  9  干扰抑制后的回波信号时频域波形

    图  10  回波信号时频域波形

    图  11  本文信号重构算法时频域结果

    图  12  本文信号重构算法与其他算法的频域对比图

    图  13  多干扰下不同算法的干扰抑制效果对比

    图  14  多干扰区域检测结果

    图  15  多干扰抑制结果

    表  1  实测雷达关键参数

    参数
    探测雷达 干扰雷达
    载波频率${f_{\text{c}}}$(GHz) 77 77~81
    信号带宽$B$(MHz) 150 825
    调频上升时间(μs) 23 33
    调频下降时间(μs) 3 3
    脉冲重复周期${T_{\text{r}}}$(μs) 30 40
    采样频率${f_{\text{s}}}$(Ms/s) 25 25
    降采样因子 1 1
    下载: 导出CSV

    表  2  仿真雷达关键参数

    参数
    探测雷达干扰雷达
    起始频率${f_{\text{c}}}$(GHz)7777
    信号带宽$B$(MHz)500300~1200
    脉冲重复周期${T_{\text{r}}}$($ \mathrm{\mu }\mathrm{s} $)51.240
    ADC采样频率(Ms/s)4040
    目标距离(m)40/
    干扰雷达数目/15
    下载: 导出CSV

    表  3  不同干扰检测算法对比表(%)

    检测因子包络检测[9]PELT算法 [10]PELT-KCN [11]本文算法
    $ {\text{R}}{{\text{R}}_{\text{I}}} $83.367.563.293.7
    ${\text{R}}{{\text{R}}_{\text{S}}}$79.487.977.497.2
    下载: 导出CSV
  • [1] 黄岩, 张慧, 兰吕鸿康, 等. 汽车毫米波雷达信号处理技术综述[J]. 雷达学报, 2023, 12(5): 923–970. doi: 10.12000/JR23119.

    HUANG Yan, ZHANG Hui, LAN Lyuhongkang, et al. Overview of signal processing techniques for automotive millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 923–970. doi: 10.12000/JR23119.
    [2] KUMBUL U, CHEN Yue, PETROV N, et al. Impacts of mutual interference analysis in FMCW automotive radar[C]. Proceedings of 2023 17th European Conference on Antennas and Propagation, Florence, Italy, 2023: 1–5. doi: 10.23919/EuCAP57121.2023.10133503.
    [3] WANG Yunxuan, HUANG Yan, LIU Jiang, et al. Interference mitigation for automotive FMCW radar with tensor decomposition[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9204–9223. doi: 10.1109/TITS.2024.3375658.
    [4] 冯翔, 刘涛, 崔文卿, 等. 基于双视角时序特征融合的毫米波雷达手势数字识别研究[J]. 电子与信息学报, 2023, 45(6): 2134–2143. doi: 10.11999/JEIT220687.

    FENG Xiang, LIU Tao, CUI Wenqing, et al. Handwriting number recognition based on millimeter-wave radar with dual-view feature fusion network[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2134–2143. doi: 10.11999/JEIT220687.
    [5] LI Zhuo, ZHANG Jun, LI Biyuan, et al. An adaptive filtering algorithm based on range-Doppler information guidance[J]. IEEE Access, 2023, 11: 145661–145678. doi: 10.1109/access.2023.3344631.
    [6] ZHONG Wanting, RODRÍGUEZ-PIÑEIRO J, YIN Xuefeng, et al. REDTS: RLS-enhanced Doppler target separation for automotive FMCW radar systems[C]. Proceedings of 2025 19th European Conference on Antennas and Propagation, Stockholm, Sweden, 2025: 1–5. doi: 10.23919/eucap63536.2025.10999395.
    [7] 赵雅琴, 宋雨晴, 吴晗, 等. 基于DenseNet和卷积注意力模块的高精度手势识别[J]. 电子与信息学报, 2024, 46(3): 967–976. doi: 10.11999/JEIT230165.

    ZHAO Yaqin, SONG Yuqing, WU Han, et al. High-precision gesture recognition based on DenseNet and convolutional block attention module[J]. Journal of Electronics & Information Technology, 2024, 46(3): 967–976. doi: 10.11999/jeit230165. doi: 10.11999/JEIT230165.
    [8] OVERDEVEST J, KOPPELAAR A G C, BEKOOIJ M J G, et al. Signal reconstruction for FMCW radar interference mitigation using deep unfolding[C]. Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/icassp49357.2023.10096297.
    [9] CHOI J H, LEE H B, CHOI J W, et al. Mutual interference suppression using clipping and weighted-envelope normalization for automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2016, E99. B(1): 280–287. doi: 10.1587/transcom.2015EBP3152.
    [10] KILLICK R, FEARNHEAD P, and ECKLEY I A. Optimal detection of changepoints with a linear computational cost[J]. Journal of the American Statistical Association, 2012, 107(500): 1590–1598. doi: 10.1080/01621459.2012.737745.
    [11] LIU Zhenyu, LU Wei, WU Jiayan, et al. A PELT-KCN algorithm for FMCW radar interference suppression based on signal reconstruction[J]. IEEE Access, 2020, 8: 45108–45118. doi: 10.1109/access.2020.2977098.
    [12] LIM S, LEE S, CHOI J H, et al. Mutual interference suppression and signal restoration in automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2019, E102. B(6): 1198–1208. doi: 10.1587/transcom.2018ebp3175.
    [13] JUNG J, LIM S, KIM J, et al. Interference suppression and signal restoration using Kalman filter in automotive radar systems[C]. Proceedings of 2020 IEEE International Radar Conference, Washington, USA, 2020: 726–731. doi: 10.1109/RADAR42522.2020.9114723.
    [14] RAMEEZ M, DAHL M, and PETTERSSON M I. Autoregressive model-based signal reconstruction for automotive radar interference mitigation[J]. IEEE Sensors Journal, 2021, 21(5): 6575–6586. doi: 10.1109/JSEN.2020.3042061.
    [15] NEEMAT S, KRASNOV O, and YAROVOY A. An interference mitigation technique for FMCW radar using beat-frequencies interpolation in the STFT domain[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 1207–1220. doi: 10.1109/TMTT.2018.2881154.
    [16] KUMUDA D K, SRIHARI P, SHESHAGIRI D, et al. A mutual interference mitigation algorithm for dense on-road automotive radars scenario[C]. Proceedings of 2023 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2023: 1–6. doi: 10.1109/conecct57959.2023.10234787.
    [17] WENG Youlong, CHEN Guangzhi, CHEN Jingxuan, et al. FRFT-based interference suppression for automotive FMCW radars[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 8953–8965. doi: 10.1109/tvt.2025.3539790.
    [18] MAZHER K U, GRAFF A, GONZÁLEZ-PRELCIC N, et al. Automotive radar interference characterization: FMCW or PMCW?[C]. Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, Republic of, 2024: 13406–13410. doi: 10.1109/icassp48485.2024.10448296.
    [19] WU Yubo, HOU Y T, LI A, et al. Real-time interference mitigation for automotive radar[C]. Proceedings of 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/radarconf2351548.2023.10149557.
    [20] WANG Yunxuan, HUANG Yan, WEN Cai, et al. Mutual interference mitigation for automotive FMCW radar with time and frequency domain decomposition[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(11): 5028–5044. doi: 10.1109/TMTT.2023.3275816.
    [21] REBUT J, OUAKNINE A, MALIK W, et al. Raw high-definition radar for multi-task learning[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17000–17009. doi: 10.1109/cvpr52688.2022.01651.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-01
  • 修回日期:  2025-09-17
  • 网络出版日期:  2025-09-23

目录

    /

    返回文章
    返回