高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双模微波雷达联合雨量计的降雨强度动态反演算法

张琪烁 张文鑫 高梦宇 熊飞

张琪烁, 张文鑫, 高梦宇, 熊飞. 基于双模微波雷达联合雨量计的降雨强度动态反演算法[J]. 电子与信息学报. doi: 10.11999/JEIT250535
引用本文: 张琪烁, 张文鑫, 高梦宇, 熊飞. 基于双模微波雷达联合雨量计的降雨强度动态反演算法[J]. 电子与信息学报. doi: 10.11999/JEIT250535
ZHANG Qishuo, ZHANG Wenxin, GAO Mengyu, XIONG Fei. Dynamic Inversion Algorithm for Rainfall Intensity Based on Dual-Mode Microwave Radar Combined Rain Gauge[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250535
Citation: ZHANG Qishuo, ZHANG Wenxin, GAO Mengyu, XIONG Fei. Dynamic Inversion Algorithm for Rainfall Intensity Based on Dual-Mode Microwave Radar Combined Rain Gauge[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250535

基于双模微波雷达联合雨量计的降雨强度动态反演算法

doi: 10.11999/JEIT250535 cstr: 32379.14.JEIT250535
基金项目: 国家自然科学基金青年基金(62406032),北京市自然科学基金资助(4242036)
详细信息
    作者简介:

    张琪烁:男,硕士生,研究方向为雷达信号处理

    张文鑫:男,讲师,研究方向为毫米波雷达、雷达信号处理

    高梦宇:女,硕士生,研究方向为雷达信号处理

    熊飞:男,工程师,研究方向为系统稳定性、可靠性

    通讯作者:

    张文鑫 zhangwenxin@bistu.edu.cn

  • 中图分类号: TN959.4

Dynamic Inversion Algorithm for Rainfall Intensity Based on Dual-Mode Microwave Radar Combined Rain Gauge

Funds: The Youth Fund of the National Natural Science Foundation of China (62406032), Beijing Natural Science Foundation (4242036)
  • 摘要: 微波气象雷达探测降雨特征的应用前景较为广泛,但其数据维度单一,测量精度受限于传统反演算法局限性。该文提出基于双模(FMCW-CW)微波雷达联合雨量计的数据进行融合反演降雨强度。针对FMCW模式的雨滴谱数据特征,该文提出基于注意力机制(Attention)连接双层长短期记忆网络(LSTM)的融合算法(LSTM-Attention-LSTM),通过Attention和 LSTM提取雨滴谱数据与实际降雨强度之间的依赖关系,聚焦重要特征并进行解码预测。同时,针对CW模式反演算法难以获取雨滴谱数据,仅能依赖反射率因子和降雨率(Z-R)关系的问题,提出基于扩展卡尔曼算法(EKF)优化Z-R关系,通过动态建模Z-R参数、融合多源数据、施加物理约束,以便准确拟合Z-R关系。实验结果表明:(1) LSTM-Attention-LSTM显著提升降雨率反演精度,相较实际测量降雨强度相关系数(R2)达到0.95,均方根误差(RMSE)为0.1623 mm/h。(2) 基于EKF优化动态Z-R关系法能够更加精准地确定Z-R关系的参数,拟合结果与实际数据分布情况相关度最高R2为0.972,RMSE为0.1076 mm/h。
  • 图  1  双模雷达信号示意图

    图  2  双模雷达功率谱

    图  3  LSTM-Attention-LSTM结构

    图  4  LSTM-Attention-LSTM训练流程

    图  5  FMCW模式近地高度各模型反演结果对比

    图  6  Z-R分布以及各模型拟合曲线

    图  7  CW模式各Z-R关系模型反演结果对比

    表  1  LSTM网络参数设置

    模型参数第1层LSTM第2层LSTM
    学习率0.0090.001
    遗忘率0.200
    隐藏层神经单元数量256128
    最大迭代次数300200
    下载: 导出CSV

    表  2  FMCW模式各模型反演结果指标

    模型RMSEMAER2
    雨滴谱算法
    LSTM
    双层LSTM
    LSTM-attention-LSTM
    0.3009
    0.2773
    0.2260
    0.1623
    0.2371
    0.2156
    0.1982
    0.1470
    0.8285
    0.8544
    0.9032
    0.9501
    下载: 导出CSV

    表  3  CW模式各Z-R模型最优参数

    模型ab
    对流型经验公式
    北京平原经验公式
    动态Z-R
    EKF优化动态Z-R
    300
    386
    298
    374
    1.40
    1.32
    1.50
    1.24
    下载: 导出CSV

    表  4  CW模式各Z-R模型反演结果指标

    模型RMSEMAER2
    对流型经验公式
    北京平原经验公式
    动态Z-R
    EKF优化Z-R
    0.2059
    0.1770
    0.1466
    0.1076
    0.1799
    0.1479
    0.1186
    0.0940
    0.9197
    0.9207
    0.9593
    0.9720
    下载: 导出CSV
  • [1] SEGOVIA-CARDOZO D A, BERNAL-BASURCO C, and RODRÍGUEZ-SINOBAS L. Tipping bucket rain gauges in hydrological research: Summary on measurement uncertainties, calibration, and error reduction strategies[J]. Sensors, 2023, 23(12): 5385. doi: 10.3390/s23125385.
    [2] 戴强, 刘超楠, 张亚茹, 等. 基于多模式雷达遥感的陆表降雨反演研究进展[J]. 遥感学报, 2023, 27(7): 1574–1589. doi: 10.11834/jrs.20231768.

    DAI Qiang, LIU Chaonan, ZHANG Yaru, et al. Development of precipitation retrieval based on multimode radar remote sensing[J]. National Remote Sensing Bulletin, 2023, 27(7): 1574–1589. doi: 10.11834/jrs.20231768.
    [3] ZHOU Ruiyang, GONG Aofan, and NI Guangheng. A machine learning model for radar quantitative precipitation estimation in Beijing, China[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, US, 2023: 3823–3826. doi: 10.1109/IGARSS52108.2023.10282719.
    [4] FARIZHANDI A A K and MAMIVAND M. Spatiotemporal prediction of microstructure evolution with predictive recurrent neural network[J]. Computational Materials Science, 2023, 223: 112110. doi: 10.1016/j.commatsci.2023.112110.
    [5] POLZ J, GLAWION L, GEBISSO H, et al. Temporal super-resolution, ground adjustment, and advection correction of radar rainfall using 3-D-convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103710. doi: 10.1109/TGRS.2024.3371577.
    [6] LI Wenyuan, CHEN Haonan, and HAN Lei. Polarimetric radar quantitative precipitation estimation using deep convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4102911. doi: 10.1109/TGRS.2023.3280799.
    [7] WANG Fuzeng, CAO Yaxi, WANG Qiusong, et al. Estimating precipitation using LSTM-based raindrop spectrum in Guizhou[J]. Atmosphere, 2023, 14(6): 1031. doi: 10.3390/atmos14061031.
    [8] HARILAL G T, DIXIT A, and QUATTRONE G. Establishing hybrid deep learning models for regional daily rainfall time series forecasting in the United Kingdom[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108581. doi: 10.1016/j.engappai.2024.108581.
    [9] 卓健, 廖胜石, 苏传程, 等. MLP在雷达定量降水估测中的应用[J]. 热带气象学报, 2023, 39(3): 289–299. doi: 10.16032/j.issn.1004-4965.2023.027.

    ZHUO Jian, LIAO Shengshi, SHU Chuancheng, et al. Application of MLP in radar quantitative precipitation estimation[J]. Journal of Tropical Meteorology, 2023, 39(3): 289–299. doi: 10.16032/j.issn.1004-4965.2023.027.
    [10] CUI Liman, LI Haoren, SU Aifang, et al. Raindrop size distributions in the Zhengzhou extreme rainfall event on 20 July 2021: Temporal-spatial variability and implications for radar QPE[J]. Journal of Meteorological Research, 2024, 38(3): 489–503. doi: 10.1007/s13351-024-3119-9.
    [11] ZHANG Peng, LIU Xichuan, and PU Kang. Improving quantitative precipitation estimation using adaptive Z-R relationship adjustment: Merging weather radar with commercial microwave links[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 2001310. doi: 10.1109/TGRS.2025.3552794.
    [12] MAITRA A, RAKSHIT G, and JANA S. Three-parameter rain drop size distributions from GPM dual-frequency precipitation radar measurements: Techniques and validation with ground-based observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4110711. doi: 10.1109/TGRS.2022.3227622.
    [13] LEIGHTON H, BLACK R, ZHANG Xuejin, et al. The relationship between reflectivity and rainfall rate from rain size distributions observed in hurricanes[J]. Geophysical Research Letters, 2022, 49(23): e2022GL099332. doi: 10.1029/2022GL099332.
    [14] SHA Lina, LÜ Jingjing, ZHU Bin, et al. Investigation of summer raindrop size distributions and associated relations in the semi-arid region over Inner Mongolian Plateau, China[J]. Advances in Atmospheric Sciences, 2025, 42(5): 1026–1042. doi: 10.1007/s00376-024-4059-0.
    [15] TAO Shuting, PENG Peng, LI Yunfei, et al. Supervised contrastive representation learning with tree-structured parzen estimator Bayesian optimization for imbalanced tabular data[J]. Expert Systems with Applications, 2024, 237: 121294. doi: 10.1016/j.eswa.2023.121294.
    [16] 覃睿, 张小琴. 不同输入设置对LSTM洪水预报模型应用效果的影响[J]. 湖泊科学, 2025, 37(4): 1470–1480. doi: 10.18307/2025.0444.

    QIN Rui and ZHANG Xiaoqin. Comparison on the application performance of LSTM flood forecasting model under different input methods[J]. Journal of Lake Sciences, 2025, 37(4): 1470–1480. doi: 10.18307/2025.0444.
    [17] LIU Miaomiao, ZUO Juncheng, TAN Jianguo, et al. Comparing and optimizing four machine learning approaches to radar-based quantitative precipitation estimation[J]. Remote Sensing, 2024, 16(24): 4713. doi: 10.3390/rs16244713.
    [18] LI Jianzhu, SHI Yi, ZHANG Ting, et al. Radar precipitation nowcasting based on ConvLSTM model in a small watershed in North China[J]. Natural Hazards, 2024, 120(1): 63–85. doi: 10.1007/s11069-023-06193-6.
    [19] KARBASI M, JAMEI M, MALIK A, et al. Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model[J]. Agricultural Water Management, 2023, 281: 108210. doi: 10.1016/j.agwat.2023.108210.
    [20] 胡欢, 贾田鹏, 张英. 基于特征点云统计的多传感器融合定位方法[J]. 传感器与微系统, 2025, 44(3): 125–129. doi: 10.13873/J.1000-9787(2025)03-0125-05.

    HU Huan, JIA Tianpeng, and ZHANG Ying. Multi-sensor fusion localization method based on feature point cloud statistics[J]. Transducer and Microsystem Technologies, 2025, 44(3): 125–129. doi: 10.13873/J.1000-9787(2025)03-0125-05.
    [21] SITU Zuxiang, WANG Qi, TENG Shuai, et al. Improving urban flood prediction using LSTM-DeepLabv3+ and Bayesian optimization with spatiotemporal feature fusion[J]. Journal of Hydrology, 2024, 630: 130743. doi: 10.1016/j.jhydrol.2024.130743.
    [22] ELABD E, HAMOUDA H M, ALI M A M, et al. Climate change prediction in Saudi Arabia using a CNN GRU LSTM hybrid deep learning model in al Qassim region[J]. Scientific Reports, 2025, 15(1): 16275. doi: 10.1038/s41598-025-00607-0.
    [23] 赵城城, 张乐坚, 梁海河, 等. 北京山区和平原地区夏季雨滴谱特征分析[J]. 气象, 2021, 47(7): 830–842. doi: 10.7519/j.issn.1000-0526.2021.07.006.

    ZHAO Chengcheng, ZHANG Lejian, LIANG Haihe, et al. Microphypical characteristics of the raindrop size distribution between mountain and plain areas over Beijing in summer[J]. Meteorological Monthly, 2021, 47(7): 830–842. doi: 10.7519/j.issn.1000-0526.2021.07.006.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-09
  • 修回日期:  2025-09-03
  • 网络出版日期:  2025-09-21

目录

    /

    返回文章
    返回