高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IRS辅助的无人机RSMA系统安全速率最大化算法

王正强 孔维冬 万晓榆 樊自甫 多滨

王正强, 孔维冬, 万晓榆, 樊自甫, 多滨. IRS辅助的无人机RSMA系统安全速率最大化算法[J]. 电子与信息学报. doi: 10.11999/JEIT250452
引用本文: 王正强, 孔维冬, 万晓榆, 樊自甫, 多滨. IRS辅助的无人机RSMA系统安全速率最大化算法[J]. 电子与信息学报. doi: 10.11999/JEIT250452
WANG Zhengqiang, KONG Weidong, WAN Xiaoyu, FAN Zifu, DUO Bin. Secrecy Rate Maximization Algorithm for IRS Assisted UAV-RSMA Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250452
Citation: WANG Zhengqiang, KONG Weidong, WAN Xiaoyu, FAN Zifu, DUO Bin. Secrecy Rate Maximization Algorithm for IRS Assisted UAV-RSMA Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250452

IRS辅助的无人机RSMA系统安全速率最大化算法

doi: 10.11999/JEIT250452 cstr: 32379.14.JEIT250452
基金项目: 四川省区域创新合作项目(2022YFQ0017)
详细信息
    作者简介:

    王正强:男,副教授,研究方向为绿色通信、无人机通信和物理层安全等

    孔维冬:女,硕士生,研究方向为无人机通信、智能反射面、物理层安全

    万晓榆:男,教授,研究方向为下一代无线通信

    樊自甫:男,教授,研究方向为下一代无线通信

    多滨:男,教授,研究方向为无人机通信

    通讯作者:

    王正强 wangzq@cqupt.edu.cn

  • 中图分类号: TN929.5

Secrecy Rate Maximization Algorithm for IRS Assisted UAV-RSMA Systems

Funds: Sichuan Province Regional Innovation Cooperation Project (2022YFQ0017)
  • 摘要: 该文研究了智能反射面(IRS)辅助基于速率分割多址接入(RSMA)技术的无人机(UAV)系统安全传输问题。针对存在多个窃听者的通信场景,提出一种联合优化预编码向量、公共安全速率分配、IRS相移和UAV位置的资源分配方案。针对该非凸优化问题,采用分层优化方法将其分解为内层和外层优化两部分。对于内层优化,给定UAV位置,交替优化预编码向量、公共安全速率分配子问题和IRS相移子问题,通过逐次凸逼近、1阶泰勒展开和半正定松弛等方法将非凸问题转化为凸优化问题求解;外层优化,给定其他优化变量,采用粒子群优化算法实现UAV的位置优化。仿真结果表明,所提算法能够有效提高系统安全速率,并优于现有的基准方案。
  • 图  1  IRS辅助无人机RSMA通信系统模型

    图  2  安全速率随迭代次数变化曲线

    图  3  安全速率随UAV最大发射功率变化曲线

    图  4  安全速率随UAV天线个数变化曲线

    图  5  安全速率随IRS反射元件个数变化曲线

    图  6  UAV位置部署

    1  基于迭代的联合预编码向量与IRS相移优化算法

     (1)初始化:$ M, N,K, J $,$ {p}_{\text{c}}^{0},{p}_{k}^{0},{c}^{0},q $,
     $ \{ R_{{\text{c}},{\text{e}}}^0,\rho _{{\text{c}},k}^0,\rho _k^0,\rho _{k,{\text{e}}}^0\} $,$\{ D_{k,{\text{c}}}^0,E_{k,{\text{c}}}^0,D_{k,k}^0,E_{k,k}^0\} $,迭代次数
     $t = 0$,最大迭代次数${T_{{\text{max}}}}$,收敛精度${\varepsilon _1}$
     (2)while ${\boldsymbol{t}} \le {T_{\max }}$ do
     (3) 给定$ \{ R_{{\text{c}},{\text{e}}}^t,\rho _{{\text{c}},k}^t,\rho _k^t,\rho _{k,{\text{e}}}^t,{\boldsymbol{p}}_{\text{c}}^t,{\boldsymbol{p}}_k^t,{{\boldsymbol{c}}^t},{{\boldsymbol{u}}^t}\} $,求解问题(19)得到
     $ R_{{\text{c}},{\text{e}}}^{t + 1},\rho _{{\text{c}},k}^{t + 1},\rho _k^{t + 1},\rho _{k,{\text{e}}}^{t + 1}, $$ {\boldsymbol{p}}_{\text{c}}^{t + 1},{\boldsymbol{p}}_k^{t + 1},{{\boldsymbol{c}}^{t + 1}} $;
     (4)  给定$\{ D_{k,{\text{c}}}^t,E_{k,{\text{c}}}^t,D_{k,k}^t,E_{k,k}^t,{{\boldsymbol{u}}^t},{\boldsymbol{p}}_{\text{c}}^{t + 1},{\boldsymbol{p}}_k^{t + 1},{{\boldsymbol{c}}^{t + 1}}\} $,求
        解问题(23)得到$D_{k,{\text{c}}}^{t + 1},E_{k,{\text{c}}}^{t + 1},D_{k,k}^{t + 1},E_{k,k}^{t + 1},{{\boldsymbol{u}}^{t + 1}}$;
     (5)   计算安全速率$\hat R_{{\text{sec}}}^{{\text{tot}}}$
     (6)  if $|{(\hat R_{{\text{sec}}}^{{\text{tot}}})^{t + 1}} - {(\hat R_{{\text{sec}}}^{{\text{tot}}})^t}| \le {\varepsilon _1}$
     (7)   break
     (8)  else
     (9)   $ t=t+1 $
     (10) end if
     (11)end while
     (12)输出:给定无人机位置下的${\boldsymbol{p}}_{\text{c}}^ * $,${\boldsymbol{p}}_k^ * $,${{\boldsymbol{c}}^ * }$,${{\boldsymbol{u}}^ * }$
    下载: 导出CSV

    2  基于粒子群优化的无人机布局算法

     (1) 输入:粒子数$P$,惯性权重$w$,学习因子${c_1},{c_2}$,UAV位置
     边界$ {{\boldsymbol{w}}^{\min }},{{\boldsymbol{w}}^{\max }} $,最大迭代次数$T$,收敛精度${\varepsilon _2}$
     (2) 初始化:粒子位置$ {\boldsymbol{w}}_i^0 $,粒子速度$ {\boldsymbol{v}}_i^0 $,个体最优位置$ {\boldsymbol{w}}_{i,{\text{l}}}^0 $,
     全局最优位置$ {\boldsymbol{w}}_{\text{g}}^0 $,效用函数$Q({\boldsymbol{w}}_{\text{g}}^0)$
     (3) while $t \le T$ do
     (4)  for $i = 1:P$ do
     (5)   更新粒子速度
     (6)   更新粒子位置
     (7)   投影至可行区域
     (8)    调用算法1计算效用函数$Q({\boldsymbol{w}}_i^t)$
     (9)   更新个体最优$ {\boldsymbol{w}}_{i,{\text{l}}}^t $
     (10) end for
     (11) 更新全局最优$ {\boldsymbol{w}}_{\text{g}}^t $
     (12) if $|Q({\boldsymbol{w}}_{\text{g}}^t) - Q({\boldsymbol{w}}_{\text{g}}^{t - 1})| < {\varepsilon _2}$
     (13)  break
     (14) else
     (15) $t = t + 1$
     (16)end while
     (17)输出:$ {\boldsymbol{w}}_{\text{g}}^t $
    下载: 导出CSV
  • [1] LI Hongyu, MAO Yijie, DIZDAR O, et al. Rate-splitting multiple access for 6G-part III: Interplay with reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2022, 26(10): 2242–2246. doi: 10.1109/LCOMM.2022.3192041.
    [2] BADIU M A and COON J P. Communication through a large reflecting surface with phase errors[J]. IEEE Wireless Communications Letters, 2020, 9(2): 184–188. doi: 10.1109/LWC.2019.2947445.
    [3] CLERCKX B, MAO Yijie, JORSWIECK E A, et al. A primer on rate-splitting multiple access: Tutorial, myths, and frequently asked questions[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1265–1308. doi: 10.1109/JSAC.2023.3242718.
    [4] XIAO Zhenyu, ZHU Lipeng, LIU Yanming, et al. A survey on millimeter-wave beamforming enabled UAV communications and networking[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 557–610. doi: 10.1109/COMST.2021.3124512.
    [5] XIAO Yue, YE Ziqiang, WU Mingming, et al. Space-air-ground integrated wireless networks for 6G: Basics, key technologies, and future trends[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(12): 3327–3354. doi: 10.1109/JSAC.2024.3492720.
    [6] ULLAH Z, AL-TURJMAN F, and MOSTARDA L. Cognition in UAV-aided 5G and beyond communications: A survey[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 872–891. doi: 10.1109/TCCN.2020.2968311.
    [7] SINGH S K, AGRAWAL K, SINGH K, et al. On UAV selection and position-based throughput maximization in multi-UAV relaying networks[J]. IEEE Access, 2020, 8: 144039–144050. doi: 10.1109/ACCESS.2020.3014513.
    [8] XIAO Zhenyu, DONG Hang, BAI Lin, et al. Unmanned aerial vehicle base station (UAV-BS) deployment with millimeter-wave beamforming[J]. IEEE Internet of Things Journal, 2020, 7(2): 1336–1349. doi: 10.1109/JIOT.2019.2954620.
    [9] 田心记, 孟浩然, 李兴旺, 等. 双STAR-RIS辅助下行NOMA系统中最大化和速率的方法[J]. 电子与信息学报, 2024, 46(9): 3537–3543. doi: 10.11999/JEIT240007.

    TIAN Xinji, MENG Haoran, LI Xingwang, et al. Method of maximizing sum rate for dual STAR-RIS assisted downlink NOMA systems[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3537–3543. doi: 10.11999/JEIT240007.
    [10] FENG Jihan, LIU Xin, LIU Zechen, et al. Optimal trajectory and resource allocation for RSMA-UAV assisted IoT communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8693–8704. doi: 10.1109/TVT.2024.3354329.
    [11] MAO Yijie, CLERCKX B, and LI V O K. Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 133. doi: 10.1186/s13638-018-1104-7.
    [12] CLERCKX B, MAO Yijie, SCHOBER R, et al. Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A simple two-user rate analysis[J]. IEEE Wireless Communications Letters, 2020, 9(3): 349–353. doi: 10.1109/LWC.2019.2954518.
    [13] SUN Yifu, ZHU Yonggang, CAO Haotong, et al. Stacked RIS-assisted dual-polarized UAV-RSMA networks[C]. Proceedings of 2024 IEEE International Conference on Communications, Denver, USA, 2024: 641–647. doi: 10.1109/ICC51166.2024.10622409.
    [14] TANG Kun, WANG Zhengwu, ZHENG Beixiong, et al. RSMA-enhanced secure transmission in IRS-assisted networks against internal and external eavesdroppers[J]. IEEE Wireless Communications Letters, 2024, 13(12): 3310–3314. doi: 10.1109/LWC.2024.3449694.
    [15] HASHEMPOUR H R, BASTAMI H, MORADIKIA M, et al. Secure SWIPT in the multiuser STAR-RIS aided MISO rate splitting downlink[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 13466–13481. doi: 10.1109/TVT.2024.3398057.
    [16] ZHANG Chen, QU Shaocheng, ZHAO Li, et al. Robust secure beamforming design for downlink RIS-ISAC systems enhanced by RSMA[J]. IEEE Wireless Communications Letters, 2025, 14(5): 1271–1275. doi: 10.1109/LWC.2024.3521211.
    [17] KHOSHAFA M H, AHMED G A, NGATCHED T M N, et al. Aerial reconfigurable intelligent surfaces-enabled secured wireless communications: Performance analysis and optimization[J]. IEEE Transactions on Communications, 2025, 73(7): 4662–4677. doi: 10.1109/TCOMM.2024.3511959.
    [18] CHEEPURUPALLI S, EGU D K, UPADHYAY P K, et al. Deep learning-enabled secrecy performance analysis of UAV-aided reconfigurable intelligent surfaces with non-orthogonal multiple access[J]. IEEE Transactions on Cognitive Communications and Networking. doi: 10.1109/TCCN.2025.3546608. (查阅网上资料,未找到对应的年卷期页码信息,请确认).
    [19] SHANG Yixin, PENG Yuyang, YE Runlong, et al. RIS-assisted secure UAV communication scheme against active jamming and passive eavesdropping[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 16953–16963. doi: 10.1109/TITS.2024.3417932.
    [20] ZHANG Guangchi, WU Qingqing, CUI Miao, et al. Securing UAV communications via joint trajectory and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376–1389. doi: 10.1109/TWC.2019.2892461.
    [21] ZHANG Qian, LIU Ju, GAO Zhichao, et al. Robust beamforming design for RIS-aided NOMA secure networks with transceiver hardware impairments[J]. IEEE Transactions on Communications, 2023, 71(6): 3637–3649. doi: 10.1109/TCOMM.2023.3251345.
    [22] GUO Liang, JIA Jie, CHEN Jian, et al. Secure communication optimization in NOMA systems with UAV-mounted STAR-RIS[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 2300–2314. doi: 10.1109/TIFS.2023.3348242.
    [23] GE Linghui, DONG Peihao, ZHANG Hua, et al. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications[J]. IEEE Access, 2020, 8: 78702–78712. doi: 10.1109/ACCESS.2020.2990166.
    [24] 王正强, 青思雨, 万晓榆, 等. IRS辅助的NOMA无人机网络安全速率最大化算法[J]. 电子与信息学报, 2023, 45(12): 4203–4210. doi: 10.11999/JEIT221189.

    WANG Zhengqiang, QING Siyu, WAN Xiaoyu, et al. Secrecy rate maximization algorithm for IRS assisted NOMA-UAV networks[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4203–4210. doi: 10.11999/JEIT221189.
    [25] QI Yue and VAEZI M. IRS-assisted physical layer security in MIMO-NOMA networks[J]. IEEE Communications Letters, 2023, 27(3): 792–796. doi: 10.1109/LCOMM.2023.3235722.
    [26] 王正强, 何鲁娜, 樊自甫, 等. 非完美CSI条件下IRS辅助的NOMA系统安全速率最大化算法[J]. 中国科学: 信息科学, 2024, 54(6): 1487–1501. doi: 10.1360/SSI-2023-0265.

    WANG Zhengqiang, HE Luna, FAN Zifu, et al. Security rate maximization algorithm for IRS assisted NOMA systems under imperfect CSI[J]. Scientia Sinica Informationis, 2024, 54(6): 1487–1501. doi: 10.1360/SSI-2023-0265.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 修回日期:  2025-10-11
  • 网络出版日期:  2025-10-22

目录

    /

    返回文章
    返回