高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机辅助的铁路无线传感网智能数据收集与计算卸载方法

闫莉 王俊凯 方旭明 蔺伟 梁轶群

闫莉, 王俊凯, 方旭明, 蔺伟, 梁轶群. 无人机辅助的铁路无线传感网智能数据收集与计算卸载方法[J]. 电子与信息学报. doi: 10.11999/JEIT250340
引用本文: 闫莉, 王俊凯, 方旭明, 蔺伟, 梁轶群. 无人机辅助的铁路无线传感网智能数据收集与计算卸载方法[J]. 电子与信息学报. doi: 10.11999/JEIT250340
YAN Li, WANG Junkai, FANG Xuming, LIN Wei, LIANG Yiqun. UAV-Assisted Intelligent Data Collection and Computation Offloading for Railway Wireless Sensor Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250340
Citation: YAN Li, WANG Junkai, FANG Xuming, LIN Wei, LIANG Yiqun. UAV-Assisted Intelligent Data Collection and Computation Offloading for Railway Wireless Sensor Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250340

无人机辅助的铁路无线传感网智能数据收集与计算卸载方法

doi: 10.11999/JEIT250340 cstr: 32379.14.JEIT250340
基金项目: 国家自然科学基金(62101460, 62071393, U2268201)
详细信息
    作者简介:

    闫莉:女,博士,副教授,研究方向为铁路下一代移动通信

    王俊凯:男,硕士生,研究方向为铁路下一代移动通信

    方旭明:男,博士,教授,研究方向为无线与移动通信网络、交通通信与信息系统等

    蔺伟:男,硕士,正高级工程师,研究方向为铁路通信

    梁轶群:男,博士,正高级工程师,研究方向为铁路通信

    通讯作者:

    王俊凯 kai9032@my.swjtu.edu.cn

  • 中图分类号: TN929.5

UAV-Assisted Intelligent Data Collection and Computation Offloading for Railway Wireless Sensor Networks

Funds: The National Natural Science Foundation of China (62101460, 62071393, U2268201)
  • 摘要: 针对铁路复杂环境运维时无线传感网存在监测点网络信号差、传感器更换电池难及监测数据计算量大等挑战,该文提出一种多无人机辅助的铁路无线传感网智能数据收集与计算任务卸载方法。为保障铁路运营安全,方案考虑了铁路安全保护区对无人机飞行的限制,并对不同类型无线传感业务进行优先级划分,优先保障安全型传感业务传输性能,利用基站与列车的可用计算资源进行传感数据计算处理,设计了 基于多智能体软演员-评论家(MASAC)深度强化学习算法的多无人机飞行轨迹与数据卸载决策联合优化,实现无人机能耗、无线传感网能耗以及数据信息年龄的加权和最小化。仿真结果表明,所提算法能够显著提升系统整体能耗和数据信息新鲜度性能。
  • 图  1  多无人机辅助铁路无线传感器网络数据收集与计算卸载系统架构

    图  2  任务执行周期的时隙划分图

    图  3  本文所提MASAC算法架构

    图  4  本文MASAC算法与基准算法的性能对比

    图  5  不同算法的多无人机飞行轨迹对比

    图  6  不同传感器数量/AoI下的目标函数对比

    图  7  不同UAV数量/AoI权重下UAV平均能耗性能对比

    图  8  不同SN数量/AoI权重下SN平均能耗性能对比

    图  9  不同SN数量/AoI权重下的平均AoI性能对比

    表  1  仿真参数

    参数名称取值参数名称取值
    带宽$ B $ (MHz)1旋翼桨叶的叶尖速度$ {U}_{\mathrm{t}\mathrm{i}\mathrm{p}} $ (m/s)120
    传感数据$ r $ (Mbits)8平均旋翼感应速度$ {v}_{0} $ (m/s)4.03
    计算密度 (CPU周期/比特)1000机身阻力比$ {d}_{0} $0.6
    噪声功率$ {\sigma }^{2} $ (dBm)–110旋翼坚固程度$ s $0.05
    无人机高度$ H $ (m)50空气密度$ \rho $ (kg/m3)1.225
    无人机最大速度$ V $20旋翼盘面积$ A $ (m2)0.503
    载波频率$ {f}_{c} $ (GHz)2有效电容系数 $ \kappa $10-28
    时隙个数$ N $30经验回放缓存区D300000
    时隙长度$ {\delta }_{t} $ (s)2Actor网络学习率0.00001
    计算资源$ {f}_{a},{f}_{b},{f}_{c} $ (Gcycles/s)2, 5, 3.5Critic网络学习率0.0001
    SN覆盖范围$ {D}_{\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}} $ (m)30SN能耗放缩因子$ \beta $10
    无人机能耗放缩因子$ \alpha $0.01折扣因子$ \gamma $0.95
    无人机最大连接数$ {N}^{max} $2迭代回合数20,000
    桨叶轮廓功率$ {P}_{0} $ (W)79.86批次大小1024
    感应功率$ {P}_{i} $ (W)88.63学习间隔5
    下载: 导出CSV

    表  2  不同类型SN的AoI性能对比

    算法 安全关键型
    SN的AoI
    结构监测型
    SN的AoI
    环境监测型
    SN的AoI
    MASAC 7.3178 13.8370 14.0416
    MASAC-Greedy 9.9738 15.6170 10.7290
    MASAC-AOU 14.2142 13.2253 18.2617
    MADDPG 14.2068 17.3939 19.2440
    下载: 导出CSV
  • [1] 《铁道技术监督》编辑部. 新时代交通强国铁路先行规划纲要[J]. 铁道技术监督, 2020, 48(9): 1–6, 24. doi: 10.3969/j.issn.1006-9178.2020.09.001.

    Editorial Department of the Journal. Outline of powerful nation railway advance planning in the new era[J]. Railway Quality Control, 2020, 48(9): 1–6, 24. doi: 10.3969/j.issn.1006-9178.2020.09.001.(查阅网上资料,请确认标黄部分信息).
    [2] FLAMMINI F, GAGLIONE A, OTTELLO F, et al. Towards wireless sensor networks for railway infrastructure monitoring[C]. Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, 2010: 1–6. doi: 10.1109/ESARS.2010.5665249.
    [3] BIN Sheng and SUN Gengxin. Optimal energy resources allocation method of wireless sensor networks for intelligent railway systems[J]. Sensors, 2020, 20(2): 482. doi: 10.3390/s20020482.
    [4] SHAFIULLAH G M, GYASI-AGYEI A, and WOLFS P. Survey of wireless communications applications in the railway industry[C]. The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications (AusWireless 2007), Australia, Sydney, 2007: 65. doi: 10.1109/AUSWIRELESS.2007.74.
    [5] 王钰, 贾苏元, 赵喆, 等. 城轨列车无线传感器监测网络节能设计[J]. 计算机与数字工程, 2017, 45(1): 186–191. doi: 10.3969/j.issn.1672-9722.2017.01.041.

    WANG Yu, JIA Suyuan, ZHAO Zhe, et al. Design of energy-saving strategies for urban railway wireless sensor monitoring networks[J]. Computer & Digital Engineering, 2017, 45(1): 186–191. doi: 10.3969/j.issn.1672-9722.2017.01.041.
    [6] 端嘉盈. 高速列车运营环境监测无线传感器网络研究[D]. [博士论文], 中国铁道科学研究院, 2017.

    DUAN Jiaying. Research on wireless sensor network for high speed train operation environment monitoring[D]. [Ph. D. dissertation], China Academy of Railway Sciences, 2017.
    [7] GUPTA L, JAIN R, and VASZKUN G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1123–1152. doi: 10.1109/COMST.2015.2495297.
    [8] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
    [9] ZENG Yaoping, GUO Guanghua, CHEN Shisen, et al. Energy-efficient data collection from UAV in WSNs based on improved PSO algorithm[J]. IEEE Sensors Journal, 2024, 24(21): 35762–35774. doi: 10.1109/JSEN.2024.3453937.
    [10] BEISHENALIEVA A and YOO S. UAV path planning for data gathering in wireless sensor networks: Spatial and temporal substate-based Q-learning[J]. IEEE Internet of Things Journal, 2024, 11(6): 9572–9586. doi: 10.1109/JIOT.2023.3323921.
    [11] ZHOU Xuanhan, XIONG Jun, ZHAO Haitao, et al. Population-invariant MADRL for AoI-aware UAV trajectory design and communication scheduling in wireless sensor networks[J]. IEEE Internet of Things Journal, 2025, 12(3): 2545–2561. doi: 10.1109/JIOT.2024.3474926.
    [12] SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIOT.2021.3078701.
    [13] ZHAO Nan, YE Zhiyang, PEI Yiyang, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949–6960. doi: 10.1109/TWC.2022.3153316.
    [14] DU Jianbo, KONG Ziwen, SUN Aijing, et al. MADDPG-based joint service placement and task offloading in MEC empowered air–ground integrated networks[J]. IEEE Internet of Things Journal, 2024, 11(6): 10600–10615. doi: 10.1109/JIOT.2023.3326820.
    [15] WEI Zhiqing, ZHU Mingyue, ZHANG Ning, et al. UAV-assisted data collection for Internet of Things: A survey[J]. IEEE Internet of Things Journal, 2022, 9(17): 15460–15483. doi: 10.1109/JIOT.2022.3176903.
    [16] AMORIM R, NGUYEN H, MOGENSEN P, et al. Radio channel modeling for UAV communication over cellular networks[J]. IEEE Wireless Communications Letters, 2017, 6(4): 514–517. doi: 10.1109/LWC.2017.2710045.
    [17] AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736.
    [18] BOR-YALINIZ R I, EL-KEYI A, and YANIKOMEROGLU H. Efficient 3-D placement of an aerial base station in next generation cellular networks[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–5. doi: 10.1109/ICC.2016.7510820.
    [19] ZHANG Shuhang, ZHANG Hongliang, DI Boya, et al. Cellular UAV-to-X communications: Design and optimization for multi-UAV networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1346–1359. doi: 10.1109/TWC.2019.2892131.
    [20] CHENG Xiqi, ZHANG Jingxuan, XU Xiaodong, et al. Intelligent joint communication and computation scheme of UAV-assisted offloading in high speed rail scenarios[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.09.002. (查阅网上资料,未找到卷期页码信息,请补充).
    [21] ZENG Yong, WU Qingqing, and ZHANG Rui. Accessing from the sky: A tutorial on UAV communications for 5G and beyond[J]. Proceedings of the IEEE, 2019, 107(12): 2327–2375. doi: 10.1109/JPROC.2019.2952892.
    [22] ZHANG Xin, CHANG Zheng, HÄMÄLÄINEN T, et al. AoI-energy tradeoff for data collection in UAV-assisted wireless networks[J]. IEEE Transactions on Communications, 2024, 72(3): 1849–1861. doi: 10.1109/TCOMM.2023.3337400.
    [23] QIN Yunhui, ZHANG Zhongshan, LI Xulong, et al. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8158–8169. doi: 10.1109/TWC.2023.3260304.
    [24] YANG Yulu, SONG Tiecheng, YANG Jingce, et al. Joint energy and AoI optimization in UAV-assisted MEC-WET systems[J]. IEEE Sensors Journal, 2024, 24(9): 15110–15124. doi: 10.1109/JSEN.2024.3378844.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  51
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-08-18
  • 网络出版日期:  2025-08-26

目录

    /

    返回文章
    返回