高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近场通信物理层安全技术综述

徐勇军 李晶 骆东鑫 王骥 李兴旺 杨龙 陈莉

徐勇军, 李晶, 骆东鑫, 王骥, 李兴旺, 杨龙, 陈莉. 近场通信物理层安全技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT250336
引用本文: 徐勇军, 李晶, 骆东鑫, 王骥, 李兴旺, 杨龙, 陈莉. 近场通信物理层安全技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT250336
XU Yongjun, LI Jing, LUO Dongxin, WANG Ji, LI Xingwang, YANG Long, CHEN Li. A Survey on Physical Layer Security in Near-Field Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250336
Citation: XU Yongjun, LI Jing, LUO Dongxin, WANG Ji, LI Xingwang, YANG Long, CHEN Li. A Survey on Physical Layer Security in Near-Field Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250336

近场通信物理层安全技术综述

doi: 10.11999/JEIT250336 cstr: 32379.14.JEIT250336
基金项目: 国家自然科学基金(62271094),重庆市自然科学基金(CSTB2022NSCQ-LZX0009, CSTB2023NSCQLZX0079),重庆市青年创新人才计划(CSTB2024NSCQ-QCXMX0059),湖北省重点研发计划项目(2023BAB061),中央高校基本业务费(CCNU25ai026),东南大学毫米波重点实验室开放课题(KN202502-07)
详细信息
    作者简介:

    徐勇军:男,教授,研究方向为RIS、通感一体化等

    李晶:男,硕士生,研究方向为近场通信、物理层安全

    骆东鑫:男,硕士生,研究方向为反向散射通信、RIS

    李兴旺:男,副教授,研究方向为通感一体化、RIS等

    杨龙:男,教授,研究方向为无线物理层安全和协作通信等

    陈莉:女,工程师,研究方向为反向散射通信、RIS

    通讯作者:

    王骥 jiwang@ccnu.edu.cn

  • 中图分类号: XXXX

A Survey on Physical Layer Security in Near-Field Communication

Funds: National Natural Science Foundation of China (62271094), Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQLZX0079), New Chongqing Youth Innovative Talent Program (CSTB2024NSCQ-QCXMX0059), Key Research and Development Program of Hubei Province under Grant (2023BAB061), Fundamental Research Funds for the Central Universities of China under grant (CCNU25ai026), Open Research Fund of State Key Laboratory of Millimeter Waves, Southeast University (KN202502-07)
  • 摘要: 近场通信作为未来移动通信的关键方向,凭借其低时延及高精度定位等特性,成为6G网络演进的重要支撑。针对现有物理层安全技术仍集中在远场通信,该文系统梳理了6G近场通信物理层安全的研究进展,深入分析其核心技术与挑战。首先,阐述了近场通信的信道特性及与远场的本质区别,介绍了近场通信的体系架构,提出保密容量、保密速率等物理层关键性能指标。其次,针对不同目标与传输环境,总结了基于波束聚焦、人工噪声及多技术融合的物理层安全技术。再次,进一步探讨了视距、非视距及混合远近场环境下的安全传输策略。然后,指出复杂信道建模、安全与性能平衡及多网融合抗干扰等未来挑战。最后,对近场通信物理层安全的未来研究方向进行了展望,对推动近场通信物理层安全发展及标准化具有重要参考价值。
  • 图  1  近场通信应用图

    图  2  文章内容逻辑结构

    图  3  近场通信和远场通信

    图  4  近场通信和远场通信MISO系统模型

    图  5  近场通信采用节点放置部署架构

    图  6  近场通信采用网络层部署架构

    图  7  近场和远场安全传输的比较

    图  8  面向不同传输场景下的近场通信模型

    图  9  基于多技术融合的近场通信模型

    图  10  LoS环境下近场通信模型

    图  11  NLoS环境下近场通信模型

    图  12  混合远近场环境下通信模型

    图  13  关键技术与挑战性问题的关系

    表  1  近场通信基于不同角度部署对比

    类别 部署优势 技术复杂性 应用场景
    节点部署 灵活动态调整节点位置配置 较低主要考虑远近效应 智慧城市和物联网等通过节点部署实现可靠通信
    网络层部署 高效显著提升通信系统性能 较高涉及复杂信道处理和网络复杂度 无人驾驶和车联网等同时进行感知和数据传输场景
    下载: 导出CSV

    表  2  基于不同目标的近场通信物理层安全技术对比

    物理层安全技术优点缺点应用场景
    波束聚焦增强物理层安全以及提升保密性能技术实现复杂、对信道模型的
    准确性要求高
    物理层安全、无线能量传输和多用户
    通信中的干扰缓解
    人工噪声抗干扰能力强、无需共享密钥、保密性强涉及复杂信道处理和网络复杂度广播通信系统、物理层安全
    多技术融合降低能耗、提升性能可以适用多种场景算法复杂度高、信道估计难度大智能家居、医疗健康以及智能交通等领域
    下载: 导出CSV

    表  3  不同近场通信物理层安全技术的对比和联系

    关键技术安全机制频谱效率复杂度融合形式
    波束聚焦空间隔离
    实时波束优化
    接收器中心保护区域
    叠加人工噪声
    人工噪声信号干扰
    仅需功率分配
    波束聚焦引导人工
    噪声分布
    多技术空间信号
    联合优化

    需联合多技术
    协同优化
    ISAC结合动态
    波束调控
    下载: 导出CSV

    表  4  基于不同传输环境的近场通信物理层安全技术的对比

    传输环境 优点 缺点 应用场景
    近场LoS环境 信号质量好、波束聚焦效果佳及
    定位精度高
    覆盖范围受限、易受干扰及部署成本高 工业物联网、智能医疗及智能交通管理等
    近场NLoS环境 信号传输灵活性高、环境适应
    能力强等
    信号衰减严重、系统复杂度增加及多径干扰严重 城市峡谷间的车联网通信、室内复杂
    环境下的设备互联
    混合远近场 覆盖范围广、适应未来通信需求 技术实现难度大、安全挑战增加及信道估计困难 通感融合技术
    下载: 导出CSV
  • [1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [2] 袁正道, 崔建华, 刘飞, 等. 应用贝叶斯模型的盲近场通信感知一体化算法[J]. 电子学报, 2024, 52(10): 3507–3516. doi: 10.12263/DZXB.20230975.

    YUAN Zhengdao, CUI Jianhua, LIU Fei, et al. Blind integrated sensing algorithm for near field communication using Bayesian method[J]. Acta Electronica Sinica, 2024, 52(10): 3507–3516. doi: 10.12263/DZXB.20230975.
    [3] XU Yongjun, XU Juan, LI Xingwang, et al. RIS-assisted heterogeneous backscatter communications: A robust design[J/OL]. IEEE Transactions on Communications, https://ieeexplore.ieee.org/abstract/document/11079695, 2025. doi: 10.1109/TCOMM.2025.3588574.
    [4] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [5] XU Yongjun, GU Bowen, GAO Zhengnian, et al. Applying RIS in multi-user SWIPT-WPCN systems: A robust and environmentally-friendly design[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(1): 209–222. doi: 10.1109/TCCN.2023.3324636.
    [6] XU Yongjun, TIAN Qinyu, CHEN Qianbin, et al. Robust secure beamforming design for multi-RIS-aided MISO systems with hardware impairments and channel uncertainties[J]. IEEE Transactions on Communications, 2025, 73(3): 1517–1530. doi: 10.1109/TCOMM.2024.3451617.
    [7] ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. Beam focusing for near-field multiuser MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7476–7490. doi: 10.1109/TWC.2022.3158894.
    [8] CHEN Hui, KESKIN M F, SAKHNINI A, et al. 6G localization and sensing in the near field: Features, opportunities, and challenges[J]. IEEE Wireless Communications, 2024, 31(4): 260–267. doi: 10.1109/MWC.011.2300359.
    [9] LIU Yuanwei, WANG Zhaolin, XU Jiaqi, et al. Near-field communications: A tutorial review[J]. IEEE Open Journal of the Communications Society, 2023, 4: 1999–2049. doi: 10.1109/OJCOMS.2023.3305583.
    [10] 江浩, 石旺旗, 朱秋明, 等. 面向6G可重构智能超表面使能的近场海洋通信信道建模与信号传播机理研究[J]. 电子与信息学报, 2024, 46(12): 4383–4390. doi: 10.11999/JEIT240518.

    JIANG Hao, SHI Wangqi, ZHU Qiuming, et al. Research on channel modeling and characteristics analysis for RIS-enabled near-field marine communications towards 6G[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4383–4390. doi: 10.11999/JEIT240518.
    [11] CUI Mingyao, WU Zidong, LU Yu, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2023, 61(1): 40–46. doi: 10.1109/MCOM.004.2200136.
    [12] CHEN Wei, LIU Yuanwei, JAFARKHANI H, et al. Signal processing and learning for next generation multiple access in 6G[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(7): 1146–1177. doi: 10.1109/JSTSP.2024.3511403.
    [13] CUI Mingyao and DAI Linlong. Near-field wideband beamforming for extremely large antenna arrays[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 13110–13124. doi: 10.1109/TWC.2024.3398770.
    [14] ZHENG Tianyue, CUI Mingyao, WU Zidong, et al. Near-field wideband beam training based on distance-dependent beam split[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 1278–1292. doi: 10.1109/TWC.2024.3507795.
    [15] GUO Yunhui, ZHANG Yang, WANG Zhaolin, et al. Wideband beamforming for near-field communications with circular arrays[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 19065–19082. doi: 10.1109/TWC.2024.3478368.
    [16] ZHUO Biting, GU Juping, ZHANG Guoan, et al. Imperfect resolution of near-field beamfocusing for NOMA-aided physical-layer security[J]. IEEE Internet of Things Journal, 2025, 12(12): 18147–18483. doi: 10.1109/JIOT.2024.3522309.
    [17] ZHENG Beixiong and ZHANG Rui. IRS meets relaying: Joint resource allocation and passive beamforming optimization[J]. IEEE Wireless Communications Letters, 2021, 10(9): 2080–2084. doi: 10.1109/LWC.2021.3092222.
    [18] 赵亚军, 戴凌龙, 张建华, 等. 6G近场技术白皮书[R]. 2024. doi: 10.12142/FuTURE.202404001.

    ZAHO Yajun, DAI Linglong, ZAHNG Jianhua, et al. 6G near-field technologies white paper[R]. 2024. doi: 10.12142/FuTURE.202404001. (查阅网上资料,未找到本条文献报告编号,请确认).
    [19] LU Haiquan and ZENG Yong. Delay-Doppler alignment modulation for spatially sparse massive MIMO communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 6000–6014. doi: 10.1109/TWC.2023.3329487.
    [20] 徐勇军, 姜思巧, 张海波, 等. 基于硬件损伤的认知反向散射通信网络鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(2): 652–661. doi: 10.11999/JEIT230117.

    XU Yongjun, JIANG Siqiao, ZHANG Haibo, et al. Robust secure resource allocation algorithm for cognitive backscatter communication with hardware impairment[J]. Journal of Electronics & Information Technology, 2024, 46(2): 652–661. doi: 10.11999/JEIT230117.
    [21] LIN Jie, YU Wei, ZHANG Nan, et al. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications[J]. IEEE Internet of Things Journal, 2017, 4(5): 1125–1142. doi: 10.1109/JIOT.2017.2683200.
    [22] XIAO Han, HU Xiaoyan, LI Ang, et al. Robust full-space physical layer security for STAR-RIS-aided wireless networks: Eavesdropper with uncertain location and channel[J]. IEEE Transactions on Wireless Communications, 2025, 24(9): 7206–7220. doi: 10.1109/TWC.2025.3559075.
    [23] LI Xingwang, LIU Musen, DANG Shuping, et al. Covert communications with enhanced physical layer security in RIS-assisted cooperative networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(7): 5605–5619. doi: 10.1109/TWC.2025.3548024.
    [24] PEI Yingjie, YUE Xinwei, YI Wenqiang, et al. Secrecy outage probability analysis for downlink RIS-NOMA networks with on-off control[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11772–11786. doi: 10.1109/TVT.2023.3267531.
    [25] PANG Xiaowei, LIU Mingqian, ZHAO Nan, et al. Secrecy analysis of UAV-based mmWave relaying networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4990–5002. doi: 10.1109/TWC.2021.3064365.
    [26] RAZAQ M M and PENG Limei. DRL-based physical-layer security optimization in near-field MIMO systems[J]. IEEE Internet of Things Journal, 2025, 12(12): 18606–18615. doi: 10.1109/JIOT.2025.3552230.
    [27] ZHANG Zheng, CHEN Jian, LIU Yuanwei, et al. On the secrecy design of STAR-RIS assisted uplink NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 11207–11221. doi: 10.1109/TWC.2022.3190563.
    [28] LI Chu, ROTH S, and SEZGIN A. Enhancing the secrecy rate with direction-range focusing with FDA and RIS[J]. IEEE Transactions on Vehicular Technology, 2025, 74(5): 7835–7849. doi: 10.1109/TVT.2025.3530497.
    [29] ZHANG Yuchen, ZHANG Haiyang, XIAO Sa, et al. Near-field wideband secure communications: An analog beamfocusing approach[J]. IEEE Transactions on Signal Processing, 2024, 72: 2173–2187. doi: 10.1109/TSP.2024.3390177.
    [30] GAO Weijun, HAN Chong, LU Xuyang, et al. On multiple-antenna techniques for physical-layer range security in the terahertz band[J]. IEEE Open Journal of the Communications Society, 2024, 5: 3089–3103. doi: 10.1109/OJCOMS.2024.3398511.
    [31] FERREIRA J, GUERREIRO J, and DINIS R. Physical layer security with near-field beamforming[J]. IEEE Access, 2024, 12: 4801–4811. doi: 10.1109/ACCESS.2023.3344654.
    [32] ZHANG Zheng, LIU Yuanwei, WANG Zhaolin, et al. Physical layer security in near-field communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 10761–10766. doi: 10.1109/TVT.2024.3366115.
    [33] DROULIAS S, STRATIDAKIS G, and ALEXIOU A. Beam-focusing in near-field communications: Enhancing the physical layer security[C]. Proceedings of the 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2024: 216–220. doi: 10.1109/SPAWC60668.2024.10694462.
    [34] ZHUO Biting, GU Juping, DUAN Wei, et al. Use of beamfocusing resolution in NFC: A physical layer security version[C]. Proceedings of the 2024 IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 2024: 1329–1334. doi: 10.1109/ICCC62479.2024.10681728.
    [35] NASIR A A. Max-min secrecy rate optimization through beam focusing in near-field communications[J]. IEEE Communications Letters, 2024, 28(7): 1594–1598. doi: 10.1109/LCOMM.2024.3406396.
    [36] HU Xinyue, ZHANG Yu, YANG Lixia, et al. Securing near-field wideband MIMO communications via true-time delayer-based hybrid beamfocusing[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 13562–13578. doi: 10.1109/TWC.2024.3403995.
    [37] CHEN Jiangong, XIAO Yue, LIU Kanglai, et al. Physical layer security for near-field communications via directional modulation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 12242–12246. doi: 10.1109/TVT.2024.3382324.
    [38] YU Daizhong, YANG Lin, GAO Xiang, et al. Physical layer security in spherical-wave channel using massive MIMO[C]. Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 2022: 288–293. doi: 10.1109/PIMRC54779.2022.9978125.
    [39] PETROV V, GUERBOUKHA H, MITTLEMAN D M, et al. Wavefront hopping: An enabler for reliable and secure near field terahertz communications in 6G and beyond[J]. IEEE Wireless Communications, 2024, 31(1): 48–55. doi: 10.1109/MWC.003.2300310.
    [40] PETROV V, GUERBOUKHA H, SINGH A, et al. Wavefront hopping for physical layer security in 6G and beyond near-field THz communications[J]. IEEE Transactions on Communications, 2025, 73(5): 2996–3012. doi: 10.1109/TCOMM.2024.3484937.
    [41] ELZANATY A, LIU Jiuyu, GUERRA A, et al. Near and far field model mismatch: Implications on 6G communications, localization, and sensing[J]. IEEE Internet of Things Magazine, 2024, 7(5): 120–126. doi: 10.1109/IOTM.001.2400023.
    [42] ZHANG Lei, WANG Yinghui, CHEN Hang, et al. Physical-layer security of the NOMA-assisted ISAC systems under near-field scenario[J]. IEEE Internet of Things Journal, 2025, 12(12): 18546–18553. doi: 10.1109/JIOT.2025.3543366.
    [43] GUO Yuqing, GUO Xufeng, and WANG Ying. Channel estimation for near-field line-of-sight XL-MIMO communications using geometric prior[J]. IEEE Communications Letters, 2025, 29(4): 779–783. doi: 10.1109/LCOMM.2025.3543429.
    [44] ZHOU Zhiwen, XIAO Zhiqiang, and ZENG Yong. Single-BS simultaneous environment sensing and UE localization without LoS path by exploiting near-field scatterers[J]. IEEE Communications Letters, 2024, 28(9): 2071–2075. doi: 10.1109/LCOMM.2024.3436839.
    [45] LEE J and HONG S. Near-field LoS/NLoS channel estimation for RIS-aided MU-MIMO systems: Piece-wise low-rank approximation approach[J]. IEEE Transactions on Wireless Communications, 2025, 24(6): 4781–4792. doi: 10.1109/TWC.2025.3544198.
    [46] LU Yu and DAI Linglong. Mixed LoS/NLoS near-field channel estimation for extremely large-scale MIMO systems[C]. Proceedings of the ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 1506–1511. doi: 10.1109/ICC45041.2023.10278686.
    [47] LU Yu and DAI Linglong. Near-field channel estimation in mixed LoS/NLoS environments for extremely large-scale MIMO systems[J]. IEEE Transactions on Communications, 2023, 71(6): 3694–3707. doi: 10.1109/TCOMM.2023.3260242.
    [48] FERREIRA J, DINIS D, GUERREIRO J, et al. Optimized beamforming design for PLS in near-field uplink communications[C]. Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring) Singapore, Singapore, 2024: 1–5. doi: 10.1109/VTC2024-Spring62846.2024.10683068.
    [49] BODET D, PETROV V, PETRUSHKEVICH S, et al. Sub-terahertz near field channel measurements and analysis with beamforming and Bessel beams[J]. Scientific Reports, 2024, 14(1): 19675. doi: 10.1038/s41598-024-70542-z.
    [50] RUIZ-SICILIA J C, DI RENZO M, MURSIA P, et al. Spatial multiplexing in near-field line-of-sight MIMO communications: Paraxial and non-paraxial deployments[J]. IEEE Transactions on Green Communications and Networking, 2025, 9(1): 338–353. doi: 10.1109/TGCN.2024.3418842.
    [51] XU Yongjun, BAI Yingxiang, JIA Yunjian, et al. Robust energy efficiency optimization for double-RIS-assisted wireless-powered backscatter communications[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(5): 1718–1729. doi: 10.1109/TCCN.2024.3438354.
    [52] XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603.
    [53] GAO Zhengnian, XU Yongjun, WANG Qianzhu, et al. Outage-constrained energy efficiency maximization for RIS-assisted WPCNs[J]. IEEE Communications Letters, 2021, 25(10): 3370–3374. doi: 10.1109/LCOMM.2021.3101657.
    [54] LIU Jun, YANG Gang, LIU Yuanwei, et al. RIS empowered near-field covert communications[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 15477–15492. doi: 10.1109/TWC.2024.3430328.
    [55] WEN Yun, CHEN Gaojie, FANG Sisai, et al. STAR-RIS-assisted-full-duplex jamming design for secure wireless communications system[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4331–4343. doi: 10.1109/TIFS.2024.3376248.
    [56] HUANG Chong, CHEN Gaojie, TANG Jinchuan, et al. Machine-learning-empowered passive beamforming and routing design for multi-RIS-assisted multihop networks[J]. IEEE Internet of Things Journal, 2022, 9(24): 25673–25684. doi: 10.1109/JIOT.2022.3195543.
    [57] UMER A, MÜÜRSEPP I, ALAM M M, et al. Reconfigurable intelligent surfaces in 6G radio localization: A survey of recent developments, opportunities, and challenges[J/OL]. IEEE Communications Surveys & Tutorials, https://ieeexplore.ieee.org/document/10858311, 2025. doi: 10.1109/COMST.2025.3536517.
    [58] LIANG Liping, WANG Minmin, CHENG Wenchi, et al. Double-RIS-assisted orbital angular momentum near-field secure communications[J]. IEEE Transactions on Wireless Communications, 2025, 24(6): 4952–4965. doi: 10.1109/TWC.2025.3545368.
    [59] NASIR A A. Max-min secure energy efficiency optimization for STAR-RIS-assisted near-field wideband THz communication[J/OL]. IEEE Transactions on Green Communications and Networking, https://ieeexplore.ieee.org/document/10879532, 2025. doi: 10.1109/TGCN.2025.3541095.
    [60] DENG Wensheng, QIU Bin, and CHENG Wenchi. Multi-beam symbol-level secure communication for hybrid near- and far-field communications[C]. Proceedings of the 2024 International Conference on Ubiquitous Communication (Ucom), Xi’an, China, 2024: 16–20. doi: 10.1109/Ucom62433.2024.10695913.
    [61] ZHANG Yunpu, YOU Changsheng, CHEN Li, et al. Mixed near- and far-field communications for extremely large-scale array: An interference perspective[J]. IEEE Communications Letters, 2023, 27(9): 2496–2500. doi: 10.1109/LCOMM.2023.3296409.
    [62] ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. 6G wireless communications: From far-field beam steering to near-field beam focusing[J]. IEEE Communications Magazine, 2023, 61(4): 72–77. doi: 10.1109/MCOM.001.2200259.
    [63] SHAH S W H, QARAQE M, ALTHUNIBAT S, et al. Optimizing QoS in secure RIS-assisted mmWave network with channel aging[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 1416–1432. doi: 10.1109/TVT.2024.3460377.
    [64] SUN Linlin, CHEN Zhilin, HUANG Tao, et al. Near-field communication with random frequency diverse array[J]. IEEE Wireless Communications Letters, 2025, 14(1): 213–217. doi: 10.1109/LWC.2024.3495653.
    [65] LI Haochen, WANG Zhaolin, MU Xidong, et al. Near-field integrated sensing, positioning, and communication: A downlink and uplink framework[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2196–2212. doi: 10.1109/JSAC.2024.3413956.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2025-09-17
  • 网络出版日期:  2025-09-23

目录

    /

    返回文章
    返回