高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种电池相平面结合Conformer-BiGRU网络的电池内短路故障诊断方法

毛琳 张海新 何志伟 高明裕 董哲康

毛琳, 张海新, 何志伟, 高明裕, 董哲康. 一种电池相平面结合Conformer-BiGRU网络的电池内短路故障诊断方法[J]. 电子与信息学报. doi: 10.11999/JEIT250313
引用本文: 毛琳, 张海新, 何志伟, 高明裕, 董哲康. 一种电池相平面结合Conformer-BiGRU网络的电池内短路故障诊断方法[J]. 电子与信息学报. doi: 10.11999/JEIT250313
MAO Lin, ZHANG Haixin, HE Zhiwei, GAO Mingyu, DONG Zhekang. A Battery Internal-Short-Circuit Fault Diagnosis Method Combining Battery Phase Plane with Conformer-BiGRU Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250313
Citation: MAO Lin, ZHANG Haixin, HE Zhiwei, GAO Mingyu, DONG Zhekang. A Battery Internal-Short-Circuit Fault Diagnosis Method Combining Battery Phase Plane with Conformer-BiGRU Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250313

一种电池相平面结合Conformer-BiGRU网络的电池内短路故障诊断方法

doi: 10.11999/JEIT250313 cstr: 32379.14.JEIT250313
基金项目: 国家自然科学基金(62227802)
详细信息
    作者简介:

    毛琳:女,硕士生,研究方向为锂离子电池故障诊断、深度学习

    张海新:男,硕士生,研究方向为锂离子电池故障诊断、深度学习

    何志伟:男,教授,研究方向为汽车电子、深度学习

    高明裕:男,教授,研究方向为汽车电子、储能电池、深度学习

    董哲康:男,副教授,研究方向:汽车电子、深度学习

    通讯作者:

    高明裕 mackgao@hdu.edu.cn

  • 11现有电池故障诊断已有类似工作,但获取其数据集存在难度,若有需要可联系本文通讯作者
  • 中图分类号: TN911; TP183

A Battery Internal-Short-Circuit Fault Diagnosis Method Combining Battery Phase Plane with Conformer-BiGRU Network

Funds: The National Natural Science Foundation of China (62227802)
  • 摘要: 近年来,新能源汽车凭借环保与高效的优势迅速崛起,然而随着其市场规模的持续扩大,新能源汽车故障频发,安全性问题日益凸显。其中,内短路故障因其隐蔽性强、危害性大,成为最常见且最具威胁的故障之一。若不进行准确的诊断和处理,可能会导致严重的安全事故。因此,开发高效且精准的内短路故障诊断方法具有重要的现实意义。该文提出了一种电池相平面方法结合卷积增强Transformer-双向门控循环单元(Conformer-BiGRU)网络的电池包内短路故障诊断方法。首先,利用改进的电池相平面对电池电压序列进行二维特征提取,以捕捉更深层次的空间和结构信息。其次,提出Conformer-BiGRU网络对电池电压序列进行特征学习。该网络包含卷积神经网络(CNN)分支和Transformer分支,用于提取局部特征和全局表示,通过特征耦合单元融合后输入BiGRU模块,对电池包中的电池单体进行分类,判断是否存在内短路故障。该文基于实验平台采集的故障数据对所提出的方法进行测试,其严重内短路故障的精确率在3种国际标准工况下分别达到94.30%, 92.77%和94.85%。同时,该方法在轻度、中度和严重内短路故障数据集中,所提出方法的召回率和F1分数在3种工况下平均达到91.26%, 85.17%和88.09%。实验结果表明该方法具有更好的鲁棒性,为提升新能源汽车的安全性提供了新的解决方案。
  • 图  1  实验平台示意图

    图  2  ISC故障模拟等效电路

    图  3  FUDS, UDDS和US06 3种工况下的电流曲线

    图  4  US06工况下电池电压特征曲线

    图  5  故障诊断模型框架图

    图  6  电池相平面可视化示意图

    图  7  基于电池相平面的特征提取模块流程图

    图  8  不同故障程度的ISC电池相平面可视化

    图  9  不同数据量的严重ISC故障电池相平面可视化

    图  10  IBPP模块消融实验可视化对比

    图  11  US06工况下各模型在不同噪声水平的F1分数变化

    表  1  数据类型及规模

    测试工况 FUDS UDDS US06
    数据类型 正常 内短路 正常 内短路 正常 内短路
    轻度 中度 严重 轻度 中度 严重 轻度 中度 严重
    数据总长 93395 28060 27395 11580 82535 26465 24890 10690 85060 26795 26450 11185
    下载: 导出CSV

    表  2  模型超参数表

    超参数取值超参数取值超参数取值超参数取值
    输入维度12批大小128嵌入维度32学习率1e-3
    输出维度2训练次数100Transformer层数4激活函数Softmax
    输入长度25Dropout0.5BiGRU隐藏单元64优化算法Adam
    下载: 导出CSV

    表  3  各模型在FUDS, UDDS, US06工况下的指标结果(%)

    模型故障程度UDDSFUDSUS06
    精确率召回率F1分数精确率召回率F1分数精确率召回率F1分数
    High-LowDAAE[30]轻度50.8374.2760.3545.1471.5255.3458.0779.2167.01
    中度59.5872.7665.5156.2670.2162.4665.1977.5570.83
    严重64.2176.2469.7063.1273.1467.7667.7881.0473.82
    IGDN[31]轻度62.4980.8570.4959.5776.5667.0068.6381.6974.59
    中度70.8379.5174.9266.8176.8371.4772.8182.2677.24
    严重74.7484.6679.3973.4082.7177.7876.3486.5081.10
    TranAD[32]轻度76.9172.3074.5373.6881.1277.2279.8280.9680.38
    中度81.1576.2578.6277.0285.5281.0482.2984.9983.62
    严重85.3577.8681.4379.2286.8482.8587.6082.4184.92
    MSCRVAE[33]轻度80.8775.2677.9679.7382.9281.2987.2581.1884.11
    中度84.0277.7480.7581.6682.5482.1090.5381.7785.92
    严重86.4978.9182.5283.3283.4983.4091.4680.9285.69
    Conformer[34]轻度83.5076.1079.6385.6573.6279.2889.2080.2584.50
    中度86.7079.3582.8687.9078.5583.0090.7585.4087.98
    严重91.7080.1285.5089.6580.0184.5791.1287.2289.12
    BiGRU[35]轻度72.3074.2473.2667.3076.5571.6376.6077.7477.16
    中度75.2182.1078.5068.1081.3374.1379.3580.9280.13
    严重78.3083.7580.9371.8080.1775.7580.7584.4882.57
    Conformer-BiGRU
    (本文模型)
    轻度88.1783.2085.6187.6182.2084.8192.3288.7790.53
    中度89.5583.9986.6889.0481.3385.0192.7588.9290.79
    严重94.3084.7689.2792.7783.2187.7394.8590.1392.42
    下载: 导出CSV

    表  4  US06工况下各模型的训练时间与推理时间

    模型High-LowDAAEIGDNTranADMSCRVAEConformerBiGRUConformer- BiGRU
    单次训练时间(s)103.261.4155.9180.3129.686.8112.7
    推理时间(ms)2.133.025.314.973.462.412.84
    下载: 导出CSV

    表  5  加入特征提取模块(IBPP)后的实验结果(%)

    模型 UDDS FUDS US06
    精确率 召回率 F1分数 精确率 召回率 F1分数 精确率 召回率 F1分数
    High-LowDAAE 63.75 75.50 69.13 62.43 71.33 66.58 69.18 81.99 75.04
    IGDN 75.69 82.64 79.01 72.55 82.93 77.93 77.72 85.27 81.32
    TranAD 87.92 80.27 83.92 81.84 84.69 83.24 88.59 86.17 87.36
    MSCRVAE 89.74 80.45 84.84 84.81 81.29 83.01 92.74 83.54 87.90
    Conformer-BiGRU (本文模型) 94.30 84.76 89.27 92.77 83.21 87.73 94.85 90.13 92.42
    下载: 导出CSV

    表  6  数据长度鲁棒性比较(%)

    故障程度精确率召回率F1分数
    轻度91.6887.1289.34
    中度90.0888.4789.26
    严重88.8687.3988.11
    下载: 导出CSV
  • [1] JI Xiaoyue, CHEN Yi, WANG Junfan, et al. Time-frequency hybrid neuromorphic computing architecture development for battery state-of-health estimation[J]. IEEE Internet of Things Journal, 2024, 11(24): 39941–39957. doi: 10.1109/JIOT.2024.3448350.
    [2] HU Shimin, LIU Zhihui, TAN Yongshi, et al. The status quo and future trends of new energy vehicle power batteries in China—analysis from policy perspective[J]. Energy Reports, 2022, 8(S8): 63–80. doi: 10.1016/j.egyr.2022.09.082.
    [3] 丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023, 12(5): 1751–1752.

    DING Xuqiang, TAO Qi, and LUO Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751–1752.
    [4] KHAN F M N U, RASUL M G, SAYEM A S M, et al. Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review[J]. Energy Reports, 2023, 9(S11): 11–21. doi: 10.1016/j.egyr.2023.08.069.
    [5] XU Jingjing, CAI Xinyun, CAI Songming, et al. High‐energy lithium‐ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. doi: 10.1002/eem2.12450.
    [6] SEPASIAHOOYI S and ABDOLLAHI F. Fault detection of new and aged lithium-ion battery cells in electric vehicles[J]. Green Energy and Intelligent Transportation, 2024, 3(3): 100165. doi: 10.1016/j.geits.2024.100165.
    [7] 朱晓庆, 王震坡, WANG H, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91–118. doi: 10.3901/JME.2020.14.091.

    ZHU Xiaoqing, WANG Zhenpo, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91–118. doi: 10.3901/JME.2020.14.091.
    [8] REN Dongsheng, FENG Xuning, LIU Lishuo, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563–573. doi: 10.1016/j.ensm.2020.10.020.
    [9] 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93–104. doi: 10.3901/JME.2019.24.093.

    CHEN Zeyu, XIONG Rui, and SUN Fengchun. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24): 93–104. doi: 10.3901/JME.2019.24.093.
    [10] CORTADA-TORBELLINO M, ELVIRA D G, EL AROUDI A, et al. Review of lithium-ion battery internal changes due to mechanical loading[J]. Batteries, 2024, 10(7): 258. doi: 10.3390/batteries10070258.
    [11] KONG Jinzhen, LIU Jie, ZHU Jingzhe, et al. Review on lithium-ion battery PHM from the perspective of key PHM steps[J]. Chinese Journal of Mechanical Engineering, 2024, 37(1): 71. doi: 10.1186/s10033-024-01055-z.
    [12] ZHAO Hongqian, ZHAO Zhigang, SHU Xing, et al. Voltage fault diagnosis and prognostic of lithium-ion batteries in electric scooters based on hybrid neural network and multiple thresholds[J]. Journal of Power Sources, 2024, 618: 235197. doi: 10.1016/j.jpowsour.2024.235197.
    [13] ZHAO Jiahui, LIU Mingyi, ZHANG Bin, et al. Review of lithium-ion battery fault features, diagnosis methods, and diagnosis procedures[J]. IEEE Internet of Things Journal, 2024, 11(11): 18936–18950. doi: 10.1109/JIOT.2023.3324322.
    [14] KONG Xiangdong, ZHENG Yuejiu, OUYANG Minggao, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358–368. doi: 10.1016/j.jpowsour.2018.05.097.
    [15] ZHANG Zhaosheng, BI Jiyu, LI Da, et al. Battery defect detection for real world vehicles based on Gaussian distribution parameterization developed LCSS[J]. Journal of Energy Storage, 2024, 75: 109679. doi: 10.1016/j.est.2023.109679.
    [16] PAN Tinglong, YU Ziyi, MA Shunshun, et al. Detection of internal short circuit in lithium-ion batteries based on electrothermal coupling model[J]. Journal of Energy Storage, 2025, 106: 114685. doi: 10.1016/j.est.2024.114685.
    [17] OUYANG Minggao, ZHANG Mingxuan, FENG Xuning, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272–283. doi: 10.1016/j.jpowsour.2015.06.087.
    [18] XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1–10. doi: 10.1016/j.jpowsour.2016.11.007.
    [19] 高明裕, 蔡林辉, 孙长城, 等. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.

    GAO Mingyu, CAI Linhui, SUN Changcheng, et al. An internal short circuit fault detecting of battery pack based on spearman rank correlation combined with neural network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
    [20] CHEN Siwen, SUN Jinlei, TANG Yong, et al. A fault diagnosis method of battery internal short circuit based on multi-feature recognition[J]. Transactions of the Institute of Measurement and Control, 2024, 46(11): 2186–2197. doi: 10.1177/01423312241233799.
    [21] ZHANG Kai, JIANG Lulu, DENG Zhongwei, et al. An early soft internal short-circuit fault diagnosis method for lithium-ion battery packs in electric vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 644–655. doi: 10.1109/TMECH.2023.3234770.
    [22] GU Xin, LI Jinglun, LIU Kailong, et al. A precise minor-fault diagnosis method for lithium-ion batteries based on phase plane sample entropy[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8): 8853–8861. doi: 10.1109/TIE.2023.3319717.
    [23] LUCAFERRI V, QUERCIO M, LAUDANI A, et al. A review on battery model-based and data-driven methods for battery management systems[J]. Energies, 2023, 16(23): 7807. doi: 10.3390/en16237807.
    [24] 耿陈, 彭乔, 孟锦豪, 等. 考虑弛豫过程的锂离子电池电-热-老化耦合建模[J]. 电力自动化设备, 2025, 45(3): 33–39. doi: 10.16081/j.epae.202501001.

    GENG Chen, PENG Qiao, MENG Jinhao, et al. Coupled electro-thermal-aging modeling for lithium-ion battery considering relaxation process[J]. Electric Power Automation Equipment, 2025, 45(3): 33–39. doi: 10.16081/j.epae.202501001.
    [25] LI Jinglun, GU Xin, MAO Ziheng, et al. An early-fault diagnostic method based on phase plane for lithium-ion batteries under complex operation conditions[J]. Journal of Energy Storage, 2024, 96: 112638. doi: 10.1016/j.est.2024.112638.
    [26] SHAFIQ M and GU Zhaoquan. Deep residual learning for image recognition: A survey[J]. Applied Sciences, 2022, 12(18): 8972. doi: 10.3390/app12188972.
    [27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.
    [28] LIU Xuyang, CAI Hongchang, ZHOU Zihan, et al. Enhancing multi-type fault diagnosis in lithium-ion battery systems: Vision transformer-based transfer learning approach[J]. Journal of Power Sources, 2024, 624: 235610. doi: 10.1016/j.jpowsour.2024.235610.
    [29] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.

    ZHANG Zhaowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
    [30] TANG Chao, QIN Yunchuan, LIU Yumeng, et al. An efficient method for detecting abnormal electricity behavior[J]. Energies, 2024, 17(11): 2502. doi: 10.3390/en17112502.
    [31] SUN Bingxu, LIANG Dekuan, and ZHANG Hanyuan. An improved graph deviation network for chiller fault diagnosis by integrating the sparse cointegration analysis and the convolutional block attention mechanism[J]. Energies, 2024, 17(16): 4003. doi: 10.3390/en17164003.
    [32] WANG Dantong, RUAN Pan, XU Di, et al. TranAD: A deep transformer model for fault diagnosis of lithium batteries[C]. Proceedings of the 2023 International Conference on Smart Electrical Grid and Renewable Energy (SEGRE), Changsha, China, 2023: 133–139. doi: 10.1109/SEGRE58867.2023.00028.
    [33] XIE Tianming, XU Qifa, and JIANG Cuixia. Anomaly detection for multivariate times series through the multi-scale convolutional recurrent variational autoencoder[J]. Expert Systems with Applications, 2023, 231: 120725. doi: 10.1016/j.eswa.2023.120725.
    [34] GAO Zhengpeng, CHANG Penghui, PENG Yongjun, et al. Multi-feature weighted battery pack consistency evaluation based on massive real-world data[J]. Journal of Energy Storage, 2025, 115: 115919. doi: 10.1016/j.est.2025.115919.
    [35] HAN Yan, LIU Yang, HUANG Qingqing, et al. SOC estimation for lithium-ion batteries based on BiGRU with SE attention and Savitzky-Golay filter[J]. Journal of Energy Storage, 2024, 90: 111930. doi: 10.1016/j.est.2024.111930.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  73
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 修回日期:  2025-07-25
  • 网络出版日期:  2025-07-31

目录

    /

    返回文章
    返回