高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电作动器的准零刚度混合系统隔振设计

杨柳 赵海洋 赵坤 程佳佳 李东洁

杨柳, 赵海洋, 赵坤, 程佳佳, 李东洁. 基于压电作动器的准零刚度混合系统隔振设计[J]. 电子与信息学报. doi: 10.11999/JEIT250310
引用本文: 杨柳, 赵海洋, 赵坤, 程佳佳, 李东洁. 基于压电作动器的准零刚度混合系统隔振设计[J]. 电子与信息学报. doi: 10.11999/JEIT250310
YANG Liu, ZHAO Haiyang, ZHAO Kun, CHENG Jiajia, LI Dongjie. Hybrid Vibration Isolation Design Based on Piezoelectric Actuator and Quasi-zero Stiffness System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250310
Citation: YANG Liu, ZHAO Haiyang, ZHAO Kun, CHENG Jiajia, LI Dongjie. Hybrid Vibration Isolation Design Based on Piezoelectric Actuator and Quasi-zero Stiffness System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250310

基于压电作动器的准零刚度混合系统隔振设计

doi: 10.11999/JEIT250310 cstr: 32379.14.JEIT250310
基金项目: 国家自然科学基金(62203146),黑龙江省自然科学基金(PL2024F013),黑龙江省重点研发计划(JD2023SJ18)
详细信息
    作者简介:

    杨柳:女,教授/博导,研究方向为纳米驱动定位、微振动控制、智能机器人

    赵海洋:男,硕士生,研究方向为振动控制

    赵坤:男,硕士生,研究方向为微夹持定位

    程佳佳:男,硕士生,研究方向为跨介质主动隔振

    李东洁:女,教授/博导,模式识别与智能系统、机器视觉与信息处理、机器人与智能控制

    通讯作者:

    杨柳 yangliuheu@gmail.com

  • 中图分类号: O328

Hybrid Vibration Isolation Design Based on Piezoelectric Actuator and Quasi-zero Stiffness System

Funds: The National Natural Science Foundation of China (62203146), Natural Science Foundation of Heilongjiang Province of China(PL2024F013), his work was supported in part by Heilongjiang Province Key Research and Development Program of China under Grant JD2023SJ18
  • 摘要: 低频振动对于精密仪器有着不容忽视的危害,通过弹簧的特殊排列可以实现近零刚度的非线性力学特性,不仅能够显著提高低频隔振效果,而且对于高频率的振动也有一定的隔离效果。然而,基于准零刚度的纯被动系统在动态响应上存在局限性,对振幅的依赖较大。因此,该文提出一种压电作动器的准零刚度混合主被动隔振系统,通过主动控制调节,从而增强混合系统整体的动态性能。首先,搭建基于压电作动器的准零刚度混合系统,由线性弹簧组成的准零刚度装置作为被动隔振装置,压电作动器作为主动隔振装置;其次,提出了一种改进的Bouc-Wen(B-W)模型,通过逆模型对其迟滞非线性进行补偿,对隔振对象施加精准的主动控制;最后,建立系统的动力学方程,对外界振动采用带Luenberger的滑模观测器的自适应滑模控制,提高系统的隔振性能。通过隔振控制实验验证,相比于单一被动隔振装置隔振效果提高35%左右。
  • 图  1  准零刚度模型

    图  2  Matlab曲线

    图  3  实验装置

    图  4  扫频与共振频率处的隔振效果

    图  5  迟滞辨识

    图  6  误差曲线

    图  7  逆补偿结构框图

    图  8  补偿结果

    图  11  跟踪效果图

    图  9  实际模型与物理模型

    图  10  控制结构图

    图  12  误差结果图

    图  13  主被动隔振效果图

    表  1  辨识结果

    参数$k$$\alpha $$\beta $$\gamma $$p$$b$
    -0.06600.00050.01270.00160.00011.9788
    下载: 导出CSV

    表  2  辨识结果

    参数 $k$ $\alpha $ $\beta $ $\gamma $ $p$ $b$
    2.4179 2.8832 9.5865 4.3025 0.0039 0.9871
    下载: 导出CSV

    表  3  均方根误差表

    频率(Hz)均方根误差
    300.004024
    500.005977
    1000.064188
    下载: 导出CSV
  • [1] 孙秀婷, 钱佳伟, 齐志凤, 等. 非线性隔振及时滞消振方法研究进展[J]. 力学进展, 2023, 53(2): 308–356. doi: 10.6052/1000-0992-22-048.

    SUN Xiuting, QIAN Jiawei, QI Zhifeng, et al. Review on research progress of nonlinear vibration isolation and time-delayed suppression method[J]. Advances in Mechanics, 2023, 53(2): 308–356. doi: 10.6052/1000-0992-22-048.
    [2] NISTRI F, COSENTINI R M, DAL POGGETTO V F, et al. Attenuation of bulk waves using locally resonant soil-coupled metabarriers[J]. Journal of Physics D: Applied Physics, 2025, 58(4): 045502. doi: 10.1088/1361-6463/ad8ad0.
    [3] 刘涛, 李爱群. 准零刚度隔振系统的分析及研究进展[J]. 东南大学学报: 自然科学版, 2023, 53(6): 997–1012. doi: 10.3969/j.issn.1001-0505.2023.06.006.

    LIU Tao and LI Aiqun. An overview of research progress on quasi-zero stiffness vibration isolation systems[J]. Journal of Southeast University: Natural Science Edition, 2023, 53(6): 997–1012. doi: 10.3969/j.issn.1001-0505.2023.06.006. doi: 10.3969/j.issn.1001-0505.2023.06.006.
    [4] LI Xuan, DING Bingxiao, RAN Jinchao, et al. Design and characterization of a compact tripod quasi-zero-stiffness device for isolating low-frequency vibrations[J]. Precision Engineering, 2024, 91: 632–643. doi: 10.1016/j.precisioneng.2024.10.013.
    [5] MENG Qingye, HOU Lei, LIN Rongzhou, et al. Accurate nonlinear dynamic characteristics analysis of quasi-zero-stiffness vibration isolator via a modified incremental harmonic balance method[J]. Nonlinear Dynamics, 2024, 112(1): 125–150. doi: 10.1007/s11071-023-09036-y.
    [6] GATTI G. A nonlinear quasi-zero stiffness vibration isolator with quintic restoring force characteristic: A fundamental analytical insight[J]. Journal of Vibration and Control, 2024, 30(17/18): 4185–4198. doi: 10.1177/10775463231205806.
    [7] ZENG Rong, WEN Guilin, ZHOU Jiaxi, et al. Experimental investigation of a non-smooth quasi-zero-stiffness isolator[J]. Acta Mechanica Sinica, 2023, 39(6): 522415. doi: 10.1007/s10409-023-22415-x.
    [8] CARRELLA A, BRENNAN M J, WATERS T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012, 55(1): 22–29. doi: 10.1016/j.ijmecsci.2011.11.012.
    [9] 杨兆豪, 帅长庚, 李步云. 一种基于五弹簧模型的准零刚度隔振装置特性分析[J]. 舰船科学技术, 2023, 45(18): 77–84. doi: 10.3404/j.issn.1672-7649.2023.18.013.

    YANG Zhaohao, SHUAI Changgeng, and LI Buyun. Analysis of a five-spring vibration isolator with quasi-zero-stiffness characteristic[J]. Ship Science and Technology, 2023, 45(18): 77–84. doi: 10.3404/j.issn.1672-7649.2023.18.013.
    [10] 徐道临, 张月英, 周加喜, 等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 33(11): 208–213. doi: 10.13465/j.cnki.jvs.2014.11.036.

    XU Daolin, ZHANG Yueying, ZHOU Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J]. Journal of Vibration and Shock, 2014, 33(11): 208–213. doi: 10.13465/j.cnki.jvs.2014.11.036.
    [11] YUN Hai, LIU Lei, LI Qing, et al. Investigation on two-stage vibration suppression and precision pointing for space optical payloads[J]. Aerospace Science and Technology, 2020, 96: 105543. doi: 10.1016/j.ast.2019.105543.
    [12] CAO J, LIU B, WU Q, et al. Research on the vibration control of micro-vibration using a novel hybrid isolator[J]. Experimental Techniques, 2024: 1–13. doi: 10.1007/S40799-024-00772-3. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
    [13] SONG Henan, SHAN Xiaobiao, HOU Weijie, et al. A novel piezoelectric-based active-passive vibration isolator for low-frequency vibration system and experimental analysis of vibration isolation performance[J]. Energy, 2023, 278: 127870. doi: 10.1016/j.energy.2023.127870.
    [14] 徐道临, 张月英, 周加喜, 等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 33(11): 208–213. doi: 10.13465/j.cnki.jvs.2014.11.036.

    XU Daolin, ZHANG Yueying, ZHOU Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J]. Journal of Vibration and Shock, 2014, 33(11): 208–213. doi: 10.13465/j.cnki.jvs.2014.11.036.
    [15] ZHENG Zepeng, WANG Shuqing, JIANG Bo, et al. Characteristics of a quasi-zero-stiffness isolator using a double-curved beam as a negative stiffness mechanism[J]. Journal of Ocean University of China, 2024, 23(6): 1409–1422. doi: 10.1007/s11802-024-5762-2.
    [16] DAI Xiangjun, YE Hangyu, YUAN Tianyu, et al. Strain determination based on strain gauge-guided radial basis function and digital image correlation[J]. Optics and Lasers in Engineering, 2020, 126: 105894. doi: 10.1016/j.optlaseng.2019.105894.
    [17] 王登攀, 向路, 王露, 等. 基于位移放大的压电致动器设计与仿真[J]. 压电与声光, 2024, 46(3): 376–380. doi: 10.11977/j.issn.1004-2474.2024.03.018.

    WANG Dengpan, XIANG Lu, WANG Lu, et al. Design and simulation of piezoelectric actuator based on displacement amplification[J]. Piezoelectrics & Acoustooptics, 2024, 46(3): 376–380. doi: 10.11977/j.issn.1004-2474.2024.03.018.
    [18] 卢可, 宦荣华, 朱位秋, 等. 基于压电叠堆惯性作动器的随机振动控制研究[J]. 力学与实践, 2019, 41(3): 278–282. doi: 10.6052/1000-0879-19-013.

    LU Ke, HUAN Ronghua, ZHU Weiqiu, et al. Stochastic vibration control based on piezoelectric stack inertial actuator[J]. Mechanics in Engineering, 2019, 41(3): 278–282. doi: 10.6052/1000-0879-19-013.
    [19] ZHU Wei, CHEN Gangli, and RUI Xiaoting. Modeling of piezoelectric stack actuators considering bonding layers[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(17): 2418–2427. doi: 10.1177/1045389X15575083.
    [20] 姚晓成, 蒋春燕, 赵程, 等. 压电促动器的研制及其减振效果[J]. 机械工程材料, 2021, 45(6): 89–93. doi: 10.11973/jxgccl202106016.

    YAO Xiaocheng, JIANG Chunyan, ZHAO Cheng, et al. Fabrication and vibration reduction effect of piezoelectric actuator[J]. Materials for Mechanical Engineering, 2021, 45(6): 89–93. doi: 10.11973/jxgccl202106016.
    [21] YANG Liu, ZHONG Ruobing, LI Dongjie, et al. A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators[J]. Measurement and Control, 2022, 55(9/10): 974–982. doi: 10.1177/00202940221092140.
    [22] YANG Liu, CHENG Jiajia, HE He, et al. Cross-medium time-delay active vibration isolation method based on voltage-force hysteresis model[J]. Measurement, 2024, 235: 115027. doi: 10.1016/j.measurement.2024.115027.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-01
  • 录用日期:  2025-12-01
  • 网络出版日期:  2025-12-04

目录

    /

    返回文章
    返回