高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用频率选择表面的P波段超薄双极化吸波-透波表面设计

孙代飞 杨欢欢 李桐 廖嘉伟 吴天昊 邹靖 杨淇 曹祥玉

孙代飞, 杨欢欢, 李桐, 廖嘉伟, 吴天昊, 邹靖, 杨淇, 曹祥玉. 利用频率选择表面的P波段超薄双极化吸波-透波表面设计[J]. 电子与信息学报. doi: 10.11999/JEIT250309
引用本文: 孙代飞, 杨欢欢, 李桐, 廖嘉伟, 吴天昊, 邹靖, 杨淇, 曹祥玉. 利用频率选择表面的P波段超薄双极化吸波-透波表面设计[J]. 电子与信息学报. doi: 10.11999/JEIT250309
SUN Daifei, YANG Huanhuan, LI Tong, LIAO Jiawei, WU Tianhao, ZOU Jing, YANG Qi, CAO Xiangyu. A P-band Dual-polarized Ultra-thin Absorptive-transmissive Electromagnetic Surface Using Frequency Selective Surface[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250309
Citation: SUN Daifei, YANG Huanhuan, LI Tong, LIAO Jiawei, WU Tianhao, ZOU Jing, YANG Qi, CAO Xiangyu. A P-band Dual-polarized Ultra-thin Absorptive-transmissive Electromagnetic Surface Using Frequency Selective Surface[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250309

利用频率选择表面的P波段超薄双极化吸波-透波表面设计

doi: 10.11999/JEIT250309 cstr: 32379.14.JEIT250309
基金项目: 国家自然科学基金(62371466, 62401618, 62171460),陕西省自然科学基础研究计划(2024JC-ZDXM-39, 2025JC-YBMS-708, 20220104, 2020022)
详细信息
    作者简介:

    孙代飞:男,硕士生,研究方向为电磁超表面、新型天线设计

    杨欢欢:男,副教授,研究方向为电磁超表面、低散射天线

    李桐:女,副教授,研究方向为电磁超表面、相控阵天线

    通讯作者:

    杨欢欢 jianye8901@126.com

    李桐 tongli8811@sina.com

  • 中图分类号: TN975

A P-band Dual-polarized Ultra-thin Absorptive-transmissive Electromagnetic Surface Using Frequency Selective Surface

Funds: The National Natural Science Foundation of China (62371466, 62401618, 62171460), The Natural Science Basic Research Program of Shaanxi Province (2024JC-ZDXM-39, 2025JC-YBMS-708, 20220104, 2020022)
  • 摘要: 该文提出一种基于频率选择表面的P波段超薄双极化吸波-透波一体化电磁表面设计新方法。该方法采用单元级联和渐变弯折线结构增加有效电流路径,并通过集成集总器件实现低频宽带可调吸波,进一步通过分析频率选择表面透波结构和吸波结构的等效电路,基于电路结构的差异,在尽可能减小吸波、透波功能电磁耦合的前提下,实现了吸波-透波一体化设计。为了阐明该方法,设计了一款超薄双极化吸波-透波功能单元,同时实现了高效透波与P波段宽带可调吸波性能,并详细分析了其工作机理。结果表明:设计的一体化单元分别在P波段和C波段实现了双极化吸波-透波功能,且所需电子器件少、工作频带宽和结构超薄。所提方法综合利用场路分析,不仅实现了P波段吸波,还减小了电磁表面多功能间的相互影响,实现了不同功能结构的一体化集成设计,降低了多功能电磁表面优化设计的难度。
  • 图  1  P波段可调吸波单元

    图  2  等效电路与吸波率

    图  3  吸波机理分析

    图  4  双极化可调吸波单元示意图

    图  5  双极化吸波性能

    图  6  吸波-透波一体化单元结构及其等效电路

    图  7  吸波率与传输特性

    图  8  透波模式下的电流分析(C=1 pF, 4.3 GHz)

    图  9  不同入射角度下的吸波率与传输特性(C=0.2 pF)

    图  10  吸波-透波一体化表面样件

    图  11  吸波率与传输特性

    表  1  本文设计单元与已有文献比较

    对象设计方法工作带宽
    (GHz)
    相对带宽(%)尺寸(λ0)
    (周期×厚度)
    单极化器件数(个)/变容管数(个)极化不敏感透波
    [22]PIN+C0.400~2.500144.800.054 0×0.076 03/1YN
    [25]R+C0.415~0.82240.700.069 0×0.014 02/1NN
    [26]R+C0.700~1.90092.300.100 0×0.018 02/1NN
    [27]C0.613~1.81699.050.033 0×0.021 09/1YN
    [28]C0.980~3.760278.000.104 0×0.005 22/2YN
    [29]C1.860~3.31056.090.099 0×0.009 92/2YN
    本文R+C0.340~1.100105.600.046 0×0.007 92/1YY
    下载: 导出CSV
  • [1] MUNK B A. Frequency Selective Surfaces: Theory and Design[M]. New York: John Wiley & Sons, 2000.
    [2] ZHOU Hang, QU Shaobo, LIN Baoqin, et al. Filter-antenna consisting of conical FSS radome and monopole antenna[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 3040–3045. doi: 10.1109/TAP.2012.2194648.
    [3] SHANG Yuping, SHEN Zhongxiang, and XIAO Shaoqiu. Frequency-selective rasorber based on square-loop and cross-dipole arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5581–5589. doi: 10.1109/TAP.2014.2357427.
    [4] TAK J and CHOI J. A wearable metamaterial microwave absorber[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 784–787. doi: 10.1109/lawp.2016.2604257.
    [5] YAO Zhixin, XIAO Shaoqiu, JIANG Zhiguo, et al. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 591–595. doi: 10.1109/LAWP.2020.2972919.
    [6] YAO Zhixin, XIAO Shaoqiu, YAN Li, et al. On the design of wideband absorber based on multilayer and multiresonant FSS array[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 284–288. doi: 10.1109/LAWP.2020.3046010.
    [7] LEE M, PARK J, KIM K, et al. Broadband and wide-incidence-angle transparent metamaterial absorber using eight-resistive-arm cell[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(6): 1754–1758. doi: 10.1109/LAWP.2024.3368610.
    [8] WANG Jiawen, FAN Caizhi, LIAO Yihuan, et al. Pattern-to-absorption prediction for multilayered metamaterial absorber based on deep learning[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(5): 463–466. doi: 10.1109/LMWT.2024.3385982.
    [9] XING Jiaqi, LI Da, FAN Yudi, et al. Tunable coherent perfect absorption based on varactor-embedded metamaterial absorber[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3461–3471. doi: 10.1109/TAP.2024.3373168.
    [10] 王璐, 曹斌照, 陶鹏飞. 石墨烯-二氧化钒复合结构超宽带吸波器特性研究[J]. 激光与光电子学进展, 2025, 62(1): 0116001. doi: 10.3788/LOP240907.

    WANG Lu, CAO Binzhao, and TAO Pengfei. Study of characteristics of graphene-vanadium dioxide composite ultrawideband absorber[J]. Laser & Optoelectronics Progress, 2025, 62(1): 0116001. doi: 10.3788/LOP240907.
    [11] 黄佳俊, 曾庆生, 侯建强, 等. 基于石墨烯的斜入射稳定超宽带吸波器[J]. 光学学报, 2024, 44(23): 2324002. doi: 10.3788/AOS241418.

    HUANG Jiajun, ZENG Qingsheng, HOU Jianqiang, et al. An ultra-wideband absorber based on graphene featuring oblique incidence stability[J]. Acta Optica Sinica, 2024, 44(23): 2324002. doi: 10.3788/AOS241418.
    [12] WANG Liansheng, XIA Dongyan, FU Quanhong, et al. Graphene-based tunable wideband metamaterial absorber with polarization insensitivity and wide incident angle[J]. Frontiers in Physics, 2020, 8: 303. doi: 10.3389/FPHY.2020.00303.
    [13] WANG Zongli, WANG Xin, WANG Junlin, et al. Independently tunable dual-broadband terahertz absorber based on two-layer graphene metamaterial[J]. Optik, 2021, 247: 167958. doi: 10.1016/J.IJLEO.2021.167958.
    [14] DENG Guangsheng, XIA Tianyu, JING Shuaicheng, et al. A tunable metamaterial absorber based on liquid crystal intended for F frequency band[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2062–2065. doi: 10.1109/lawp.2017.2695617.
    [15] HUANG Xianjun, ZHANG Xiao, HU Zhirun, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 307–312. doi: 10.1049/iet-map.2014.0152.
    [16] CHAMBERS B and FORD K L. Topology for tunable radar absorbers[J]. Electronics Letters, 2000, 36(15): 1304–1306. doi: 10.1049/el:20000941.
    [17] KONG Peng, YU Xiaowei, LIU Zhengyang, et al. A novel tunable frequency selective surface absorber with dual-DOF for broadband applications[J]. Optics Express, 2014, 22(24): 30217–30224. doi: 10.1364/OE.22.030217.
    [18] LI Jialin, JIANG Jianjun, HE Yun, et al. Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 774–777. doi: 10.1109/lawp.2015.2473688.
    [19] ZHAO Jie, CHENG Qiang, CHEN Jie, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15: 043049. doi: 10.1088/1367-2630/15/4/043049.
    [20] YUAN H, ZHU B O, and FENG Y. A frequency and bandwidth tunable metamaterial absorber in x-band[J]. Journal of Applied Physics, 2015, 117(17): 173103. doi: 10.1063/1.4919753.
    [21] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体[J]. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254.

    FENG Kuisheng, LI Na, and LI Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices[J]. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254.
    [22] QI Kainan, LI Liangsheng, SU Jianxun, et al. Design of a tunable absorber based on active frequency-selective surface for UHF applications[J]. Materials, 2019, 12(23): 3989. doi: 10.3390/ma12233989.
    [23] XU Wenhua, HE Yun, KONG Peng, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics, 2015, 118(18): 184903. doi: 10.1063/1.4934683.
    [24] ZHAO Wenbo, FAN Chenxi, ZHAO Junming, et al. Wideband tunable absorber breaking the trade-off between absorption efficiency and tuning range[J]. Applied Physics Letters, 2023, 123(24): 241701. doi: 10.1063/5.0177601.
    [25] GHOSH S and SRIVASTAVA K V. Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4903–4908. doi: 10.1109/tap.2017.2731381.
    [26] YANG Xiaoqing, CHEN Huijie, LUO Jiefang, et al. Design of a tunable polarization-insensitive absorber for L and S bands using active frequency-selective surface[J]. Journal of Electronic Materials, 2020, 49(2): 1173–1183. doi: 10.1007/s11664-019-07807-1.
    [27] ZHANG Yulu, CAO Zhaowang, HUANG Ze, et al. Ultrabroadband double-sided and dual-tuned active absorber for UHF band[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1204–1208. doi: 10.1109/tap.2020.3004979.
    [28] 程宗辉, 段本方, 陈云鹏, 等. 基于磁性衬底的宽频薄层超材料吸波体研究[J]. 磁性材料及器件, 2022, 53(4): 41–47. doi: 10.19594/j.cnki.09.19701.2022.04.008.

    CHENG Zonghui, DUAN Benfang, CHEN Yunpeng, et al. Research on broadband and thin thickness metamaterial absorber based on magnetic substrate[J]. Journal of Magnetic Materials and Devices, 2022, 53(4): 41–47. doi: 10.19594/j.cnki.09.19701.2022.04.008.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  44
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-08-01
  • 网络出版日期:  2025-08-11

目录

    /

    返回文章
    返回