高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超大规模可重构智能表面混合远-近场信道估计

邵凯 花凡玉 王光宇

邵凯, 花凡玉, 王光宇. 超大规模可重构智能表面混合远-近场信道估计[J]. 电子与信息学报. doi: 10.11999/JEIT250306
引用本文: 邵凯, 花凡玉, 王光宇. 超大规模可重构智能表面混合远-近场信道估计[J]. 电子与信息学报. doi: 10.11999/JEIT250306
SHAO Kai, HUA Fanyu, WANG Guangyu. Hybrid Far-Near Field Channel Estimation for XL-RIS Assisted Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250306
Citation: SHAO Kai, HUA Fanyu, WANG Guangyu. Hybrid Far-Near Field Channel Estimation for XL-RIS Assisted Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250306

超大规模可重构智能表面混合远-近场信道估计

doi: 10.11999/JEIT250306 cstr: 32379.14.JEIT250306
详细信息
    作者简介:

    邵凯:男,副教授,硕士生导师,研究方向为智能感知与信息系统、信号与信息智能处理等

    花凡玉:女,硕士生,研究方向为可重构智能表面、信道估计等

    王光宇:男,教授,硕士生导师,研究方向为数字信号处理、滤波器组理论等

    通讯作者:

    邵凯 shaokai@cqupt.edu.cn

  • 中图分类号: TN929

Hybrid Far-Near Field Channel Estimation for XL-RIS Assisted Communication Systems

  • 摘要: 超大规模可重构智能表面(XL-RIS)辅助通信系统的信道估计,需解决混合远-近场级联信道建模、远/近场分量区分及参数估计等问题。该文建立了混合远-近场级联信道参数化模型,并针对性地提出两阶段的混合场级联信道参数估计方案:第1阶段估计基站侧的角度参数;第2阶段基于所提出的混合场前向空间平滑降秩多信号分类算法估计RIS侧的远/近场角度参数和近场距离参数,其中根据混合场效应处理远/近场分量,设计了功率谱对比方案区分远/近场分量及路径数量。仿真结果表示,相比于单一远场、近场估计方案和基于混合场正交匹配跟踪算法的估计方案,所提算法可以实现更高的估计精度。
  • 图  1  XL-RIS辅助系统模型

    图  2  系统框图

    图  3  级联角度和距离估计过程

    图  4  不同信噪比下所提方案和单一远近场方案性能对比

    图  5  不同信噪比下各个方案归一化均方误差性能对比

    图  6  TS-HF-RM和TS-HOMP-P方案性能对比

    1  混合场前向空间平滑降秩MUSIC算法

     输入:$ \tilde \varphi _B^{{\text{AOA}}} $,接收信号$ {\boldsymbol{Y}} $,瑞利距离$ {r_{{\mathrm{Ra}}}} $,远场角度集合
     $ {\tilde {\boldsymbol{\vartheta}} _f} = \varnothing $和近场角度集合$ {\tilde {\boldsymbol{\vartheta}} _n} = \varnothing$;
     输出:级联信道$ {{\tilde {\boldsymbol{H}}}} $。
     (1)根据式(19)得到处理的接收信号$ {{\bar {\boldsymbol{Y}}}} $;
     (2)根据式(20)得到协方差矩阵$ {{\boldsymbol{R}}_{\bar Y}} $;
     (3)根据式(24)得到空间平滑处理的协方差矩阵$ {{\boldsymbol{R}}_S} $;
     (4)根据式(28)得到估计的级联角度$ {\tilde \vartheta _l} $,$ l = 1,2, \cdots ,L $;
     (5)for $ l = 1,2, \cdots ,L $ do
       (a)根据式(29)计算$ P({\tilde \vartheta _l},\infty ) $,根据式(30)计算$ P({\tilde \vartheta _l},{r_{{\mathrm{Ra}}}}) $;
       (b)if $ P({\tilde \vartheta _l},\infty ) > P({\tilde \vartheta _l},{r_{{\mathrm{Ra}}}}) $ then
         (i)$ {\tilde {\boldsymbol{\vartheta}} _f} = {\tilde{\boldsymbol{ \vartheta}} _f} \cup {\tilde \vartheta _l} $
       (c)else
         (i)$ {\tilde{\boldsymbol{ \vartheta}} _n} = {\tilde {\boldsymbol{\vartheta}} _n} \cup {\tilde \vartheta _l} $
        (d)end
     (6)end
     (7)根据式(31)计算近场距离$ {{\boldsymbol{\tilde r}}_n} $;
     (8)根据式(33)得到信道衰减$ \tilde {\boldsymbol{\beta}} $;
     (9)根据式(34)得到级联信道$ {\boldsymbol{\tilde H}} $;
    下载: 导出CSV

    表  1  仿真参数

    参数数值
    BS天线数量$ M $81
    XL-RIS元件数量$ N $401 [20]
    载波频率(GHz)30[20]
    载波波长$ \lambda $(m)0.01
    RIS元件间距$ d $$ \lambda /4 $[30]
    远场分量路径数$ {L_f} $2
    近场分量路径数$ {L_n} $4
    瑞利距离(m)200
    近场范围(m)10~80[20]
    导频数量范围51~401
    下载: 导出CSV

    表  2  计算复杂度对比

    方案计算复杂度
    TS-NOMP$ O(SQL) + O(NS) + O({K_\theta }{M^2}) $
    TS-HOMP-P$ O(NQ{L_f}) + O(SQ{L_n}) + O(NS) + O({K_\theta }{M^2}) $
    TS-HOMP-NP$ O(NQL) + O(SQL(L + 1)) + O(N(N + S)) + O({K_\theta }{M^2}) $
    TS-HF-RM$ O(N{T^{\text{2}}}) + O({T^3}) + O({K_\theta }{T^2}) + O({L_n}{K_r}{T^2}) $
    下载: 导出CSV
  • [1] XIE Hao and LI Dong. Number configuration for RIS-aided systems: Opportunities and challenges[J]. IEEE Internet of Things Journal, 2025, 12(6): 6396–6417. doi: 10.1109/JIOT.2025.3532892.
    [2] CHEN Zhen, CHEN Gaojie, TANG Jie, et al. Reconfigurable-intelligent-surface-assisted B5G/6G wireless communications: Challenges, solution, and future opportunities[J]. IEEE Communications Magazine, 2023, 61(1): 16–22. doi: 10.1109/MCOM.002.2200047.
    [3] DEMIR Ö T, BJÖRNSON E, and SANGUINETTI L. Efficient channel estimation with shorter pilots in RIS-aided communications: Using array geometries and interference statistics[J]. IEEE Transactions on Wireless Communications, 2025, 24(1): 462–478. doi: 10.1109/TWC.2024.3495226.
    [4] WEI Xiuhong, SHEN Decai, and DAI Linglong. Channel estimation for RIS assisted wireless communications—Part I: Fundamentals, solutions, and future opportunities[J]. IEEE Communications Letters, 2021, 25(5): 1398–1402. doi: 10.1109/LCOMM.2021.3052822.
    [5] JENSEN T L and DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 5000–5004. doi: 10.1109/ICASSP40776.2020.9053695.
    [6] ZHOU Zhengyi, GE Ning, WANG Zhaocheng, et al. Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach[J]. IEEE Transactions on Communications, 2021, 69(2): 1228–1243. doi: 10.1109/TCOMM.2020.3034259.
    [7] PAN Cunhua, ZHOU Gui, ZHI Kangda, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883–917. doi: 10.1109/JSTSP.2022.3195671.
    [8] WANG Peilan, FANG Jun, DUAN Huiping, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905–909. doi: 10.1109/LSP.2020.2998357.
    [9] 邵凯, 鲁奔, 王光宇. 可重构智能表面辅助通信系统时变级联信道估计[J]. 通信学报, 2024, 45(1): 119–128. doi: 10.11959/j.issn.1000-436x.2024028.

    SHAO Kai, LU Ben, and WANG Guangyu. Time-varying channel estimation in reconfigurable intelligent surface assisted communication system[J]. Journal on Communications, 2024, 45(1): 119–128. doi: 10.11959/j.issn.1000-436x.2024028.
    [10] WU Jiao, KIM S, and SHIM B. Parametric sparse channel estimation for RIS-assisted terahertz systems[J]. IEEE Transactions on Communications, 2023, 71(9): 5503–5518. doi: 10.1109/TCOMM.2023.3285759.
    [11] ARDAH K, GHEREKHLOO S, DE ALMEIDA A L F, et al. TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems[J]. IEEE Signal Processing Letters, 2021, 28: 513–517. doi: 10.1109/LSP.2021.3059363.
    [12] HE Jiguang, WYMEERSCH H, and JUNTTI M. Channel estimation for RIS-Aided mmWave MIMO systems via atomic norm minimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5786–5797. doi: 10.1109/TWC.2021.3070064.
    [13] YANG Songjie, LYU Wanting, HU Zhenzhen, et al. Channel estimation for near-field XL-RIS-Aided mmWave hybrid beamforming architectures[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 11029–11034. doi: 10.1109/TVT.2023.3261340.
    [14] MASOOD K F, TONG Jun, XI Jiangtao, et al. Inductive matrix completion and Root-MUSIC-based channel estimation for intelligent reflecting surface (IRS)-aided hybrid MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7917–7931. doi: 10.1109/TWC.2023.3257138.
    [15] LEE J, CHUNG H, CHO Y, et al. Near-field channel estimation for XL-RIS assisted multi-user XL-MIMO systems: Hybrid beamforming architectures[J]. IEEE Transactions on Communications, 2025, 73(3): 1560–1574. doi: 10.1109/TCOMM.2024.3454032.
    [16] AN Jiancheng, YUEN C, DAI Linglong, et al. Near-field communications: Research advances, potential, and challenges[J]. IEEE Wireless Communications, 2024, 31(3): 100–107. doi: 10.1109/MWC.004.2300450.
    [17] CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400.
    [18] GÜRGÜNOĞLU D, KOSASIH A, RAMEZANI P, et al. Performance analysis of a 2D-MUSIC algorithm for parametric near-field channel estimation[J]. IEEE Wireless Communications Letters, 2025, 14(5): 1496–1500. doi: 10.1109/LWC.2025.3547154.
    [19] ZHANG Xiaofei, CHEN Weiyang, ZHENG Wang, et al. Localization of near-field sources: A reduced-dimension MUSIC algorithm[J]. IEEE Communications Letters, 2018, 22(7): 1422–1425. doi: 10.1109/LCOMM.2018.2837049.
    [20] WEI Xiuhong and DAI Linglong. Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field?[J]. IEEE Communications Letters, 2022, 26(1): 177–181. doi: 10.1109/LCOMM.2021.3124927.
    [21] YANG Wanning, LI Ming, and LIU Qian. A practical channel estimation strategy for XL-MIMO communication systems[J]. IEEE Communications Letters, 2023, 27(6): 1580–1583. doi: 10.1109/LCOMM.2023.3266821.
    [22] PENG Xingxing, ZHAO Lei, JIANG Yuan, et al. Channel estimation for extremely large-scale massive MIMO systems in hybrid-field channel[C]. 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233609.
    [23] LI Zhuoran, GAO Zhen, and LI Tuan. Sensing user's channel and location with terahertz extra-large reconfigurable intelligent surface under hybrid-field beam squint effect[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 893–911. doi: 10.1109/JSTSP.2023.3278942.
    [24] CHEN Shaobin, WAN Ziwei, TAO Yi, et al. Hybrid-field full-dimensional channel estimation for reconfigurable intelligent surfaces with extremely-large aperture[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–5. doi: 10.1109/WCNC57260.2024.10571039.
    [25] YANG Songjie, XIE Chenfei, LYU Wanting, et al. Near-field channel estimation for extremely large-scale reconfigurable intelligent surface (XL-RIS)-aided wideband mmWave systems[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(6): 1567–1582. doi: 10.1109/JSAC.2024.3389120.
    [26] WEI Xiuhong, SHEN Decai, and DAI Linglong. Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021, 25(5): 1403–1407. doi: 10.1109/LCOMM.2021.3052787.
    [27] HE Jin, SWAMY M N S, and AHMAD M O. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2066–2070. doi: 10.1109/TSP.2011.2180902.
    [28] CHEN Jie, LIANG Yingchang, CHENG H V, et al. Channel estimation for reconfigurable intelligent surface aided multi-user mmWave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6853–6869. doi: 10.1109/TWC.2023.3246264.
    [29] QU Kaiqian, GUO Shuaishuai, YE Jia, et al. Two-stage beamspace MUSIC-based near-field channel estimation for hybrid XL-MIMO[J]. IEEE Communications Letters, 2024, 28(8): 1949–1953. doi: 10.1109/LCOMM.2024.3409411.
    [30] XI Yang, ZHU Fuqiang, ZHOU Binggui, et al. Gridless hybrid-field channel estimation for extra-large aperture array massive MIMO systems[J]. IEEE Wireless Communications Letters, 2024, 13(2): 496–500. doi: 10.1109/LWC.2023.3333531.
    [31] ZHENG Peicong, LYU Xuantao, WANG Ye, et al. Convolutional dictionary learning based hybrid-field channel estimation for XL-RIS-aided massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2025: 1–1. doi: 10.1109/TWC.2025.3570631. (查阅网上资料,未找到卷期页码信息,请补充).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  47
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回