高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOS管选通的硅通孔键合前测试

窦贤锐 梁华国 黄正峰 鲁迎春 陈田 刘军

窦贤锐, 梁华国, 黄正峰, 鲁迎春, 陈田, 刘军. MOS管选通的硅通孔键合前测试[J]. 电子与信息学报. doi: 10.11999/JEIT250285
引用本文: 窦贤锐, 梁华国, 黄正峰, 鲁迎春, 陈田, 刘军. MOS管选通的硅通孔键合前测试[J]. 电子与信息学报. doi: 10.11999/JEIT250285
DOU Xianrui, LIANG Huaguo, HUANG Zhengfeng, LU Yingchun, CHEN Tian, LIU Jun. MOS-gated Prebond Through-Silicon Via Testing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250285
Citation: DOU Xianrui, LIANG Huaguo, HUANG Zhengfeng, LU Yingchun, CHEN Tian, LIU Jun. MOS-gated Prebond Through-Silicon Via Testing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250285

MOS管选通的硅通孔键合前测试

doi: 10.11999/JEIT250285 cstr: 32379.14.JEIT250285
基金项目: 国家自然科学基金(62027815, 62174048, 62274052),安徽省研究生教育教学改革研究重点项目(2022jyjxggyj053),教育部产学研合作协同育人项目(220802455302758)
详细信息
    作者简介:

    窦贤锐:男,博士生,研究方向为数字集成电路的可靠性设计、可测性设计,机器学习

    梁华国:男,教授,研究方向为容错计算与硬件安全、嵌入式系统综合与测试、智能控制系统

    黄正峰:男,教授,研究方向为数字集成电路的硬件容错设计,数字集成电路的抗辐射加固设计,数字集成电路的可靠性、可测性设计

    鲁迎春:男,副教授,研究方向为集成电路硬件安全技术、集成电路抗辐照加固技术、集成电路测试技术

    陈田:女,副教授,研究方向为人工智能;3D芯片与Chiplet、集成电路可测性设计;基于脑电波与生理信号的人机交互系统、情感计算

    刘军:男,副教授,研究方向为嵌入式系统、基于机器学习的故障测试和机器学习加速等软件、硬件结合方面

    通讯作者:

    窦贤锐 dxr@hfut.edu.cn

  • 中图分类号: TN407

MOS-gated Prebond Through-Silicon Via Testing

Funds: The National Natural Science Foundation of China (62027815, 62174048, 62274052), The Key Project of Teaching Reform Research for Postgraduate Education in Anhui Province (2022jyjxggyj053), The Ministry of Education, Industry-University-Research Co-Operation Collaborative Education Project (220802455302758)
  • 摘要: 在集成芯片的制造过程中,硅通孔(TSV)中可能会出现许多缺陷,这些缺陷会影响通过硅通孔信号的完整性,因此在早期生产阶段检测这些缺陷至关重要。现有的测试方法存在测试面积和时间开销大、测试精度低的问题。该文选择N型金属氧化物半导体场效应管(NMOS)和P型金属氧化物半导体场效应管(PMOS)作为选通门,以减小共享测试的面积开销;采用两级电压比较器放大测试TSV和参考电容的电压差,可以检测大于等于50 Ω的电阻性开路缺陷和小于等于9 MΩ的泄漏缺陷。 与其他方案对比,该方案具有电阻性开路缺陷检测精度高、最小的测试面积和时间开销的优点。
  • 图  1  TSV电气模型

    图  2  比较器

    图  3  MOS管选通的TSV键合前测试方法

    表  1  实验参数

    参数
    无故障TSV CTSV=60 fF, Rleak=1 TΩ
    电压VDD 1 V(10%)
    NMOS,PMOS: W/L 4/1(180 nm/45 nm)
    Crefi 60 fF
    比较器分辨率 13 mV
    下载: 导出CSV

    表  2  测试精度与MOS管宽长比的关系

    MOS管宽长比Ropen(Ω)Rleak(MΩ)
    NMOS: 4/1; PMOS: 4/1509
    NMOS: 6/1; PMOS: 4/1475
    NMOS: 8/1; PMOS: 4/1443
    PMOS: 6/1; NMOS: 4/1518.4
    PMOS: 8/1; NMOS: 4/1528.0
    下载: 导出CSV

    表  3  不同PVT下的测试精度

    工艺 温度(℃) 电压(V) Ropen(Ω) Rleak(MΩ)
    TT 27 1.0 50 9
    SS 27 1.0 88 25
    FF 27 1.0 47 3
    TT –30 1.0 53 7
    TT 0 1.0 51 8
    TT 60 1.0 51 10
    TT 125 1.0 52 12
    TT 27 0.9 94 14
    TT 27 1.1 29 7
    下载: 导出CSV

    表  4  与其他BIST方案对比

    方法 Ropen(Ω) Rleak(MΩ) 面积(μm2) 时间(μs)
    [9] 30k 200 73.80 15.0
    [10] 250 76.99 20.0
    [14] 100 81.25 2.2
    [16] 266 33 132.00 1.2
    本文 50 9 31.17 0.2
    下载: 导出CSV
  • [1] DEBENEDICTIS E P, BADAROGLU M, CHEN An, et al. Sustaining Moore’s law with 3D chips[J]. Computer, 2017, 50(8): 69–73. doi: 10.1109/MC.2017.3001236.
    [2] THADESAR P A, GU Xiaoxiong, ALAPATI R, et al. Through-silicon Vias: Drivers, performance, and innovations[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(7): 1007–1017. doi: 10.1109/TCPMT.2016.2524691.
    [3] HWANG Y, MOON S, NAM S, et al. Chiplet-based system PSI optimization for 2.5D/3D advanced packaging implementation[C]. 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, USA, 2022: 12–17. doi: 10.1109/ECTC51906.2022.00010.
    [4] LAU J H. Recent advances and trends in multiple system and heterogeneous integration with TSV interposers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(1): 3–25. doi: 10.1109/TCPMT.2023.3234007.
    [5] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228–252. doi: 10.1109/TCPMT.2022.3144461.
    [6] JUNG D H, KIM Y, KIM J J, et al. Through Silicon Via (TSV) defect modeling, measurement, and analysis[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(1): 138–152. doi: 10.1109/TCPMT.2016.2631731.
    [7] ZHAO Yi, KHURSHEED S, and AL-HASHIMI B M. Online fault tolerance technique for TSV-based 3-D-IC[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(8): 1567–1571. doi: 10.1109/TVLSI.2014.2343156.
    [8] CHANDRAKAR M and MAJUMDER M K. Performance analysis using air gap defected through silicon via: Impact on crosstalk and power[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(11): 1832–1840. doi: 10.1109/TCPMT.2022.3225142.
    [9] XU Kangkang, YU Yang, and FANG Xu. The detection of open and leakage faults for Prebond TSV test based on weak current source[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(9): 2768–2779. doi: 10.1109/TCAD.2021.3114357.
    [10] LIU Jun, CHENG Songren, CHEN Tian, et al. A self-biased current reference source-based pre-bond TSV test solution[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(4): 774–781. doi: 10.1109/TVLSI.2023.3344272.
    [11] DAS S, SU F, and CHAKRAVARTY S. A PVT-resilient no-touch DFT methodology for prebond TSV testing[C]. 2018 IEEE International Test Conference (ITC), Phoenix, USA, 2018: 1–10. doi: 10.1109/TEST.2018.8624691.
    [12] YI Maoxiang, BIAN Jingchang, NI Tianming, et al. A pulse shrinking-based test solution for Prebond through silicon via in 3-D ICs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(4): 755–766. doi: 10.1109/TCAD.2018.2821559.
    [13] LIU Jun, CHEN Zhi, CHEN Tian, et al. Voltage skew-based test technique for pre-bond TSVs in 3-D ICs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(8): 3930–3934. doi: 10.1109/TCSII.2024.3373897.
    [14] WANG Lihang, DONG Gang, ZHI Changle, et al. Prebond TSV detection for coexistence of open and leakage faults based on current charging and discharging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2025, 15(5): 1091–1103. doi: 10.1109/TCPMT.2025.3543693.
    [15] CHANG Hao, HUANG Zhengfeng, and NI Tianming. Kelvin bridge structure based TSV test for weak faults[C]. 2021 IEEE International Test Conference in Asia (ITC-Asia), Shanghai, China, 2021: 1–6. doi: 10.1109/ITC-Asia53059.2021.9808492.
    [16] LIU Jun, CHEN Zhi, CHENG Songren, et al. A symmetric bridge-based pre-bond TSV faults detection method[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2004710. doi: 10.1109/TIM.2024.3427774.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  60
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-17
  • 修回日期:  2025-07-28
  • 网络出版日期:  2025-08-04

目录

    /

    返回文章
    返回