高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合时序条件生成对抗网络的小样本雷达对抗侦察数据增强

黄琳玹 何明浩 郁春来 冯明月 张福群 张逸楠

黄琳玹, 何明浩, 郁春来, 冯明月, 张福群, 张逸楠. 融合时序条件生成对抗网络的小样本雷达对抗侦察数据增强[J]. 电子与信息学报. doi: 10.11999/JEIT250280
引用本文: 黄琳玹, 何明浩, 郁春来, 冯明月, 张福群, 张逸楠. 融合时序条件生成对抗网络的小样本雷达对抗侦察数据增强[J]. 电子与信息学报. doi: 10.11999/JEIT250280
HUANG Linxuan, HE Minghao, YU Chunlai, FENG Mingyue, ZHANG Fuqun, ZHANG Yinan. Data Enhancement for Few-shot Radar Countermeasure Reconnaissance via Temporal-Conditional Generative Adversarial Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250280
Citation: HUANG Linxuan, HE Minghao, YU Chunlai, FENG Mingyue, ZHANG Fuqun, ZHANG Yinan. Data Enhancement for Few-shot Radar Countermeasure Reconnaissance via Temporal-Conditional Generative Adversarial Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250280

融合时序条件生成对抗网络的小样本雷达对抗侦察数据增强

doi: 10.11999/JEIT250280 cstr: 32379.14.JEIT250280
详细信息
    作者简介:

    黄琳玹:男,硕士生,研究方向为侦察数据处理

    何明浩:男,教授,研究方向为电子对抗侦察

    郁春来:男,教授,研究方向为电子对抗侦察

    冯明月:男,副教授,研究方向为电子对抗侦察

    张福群:男,博士生,研究方向为雷达对抗侦察识别

    张逸楠:女,讲师,研究方向为电子对抗侦察

  • 中图分类号: TN957.51

Data Enhancement for Few-shot Radar Countermeasure Reconnaissance via Temporal-Conditional Generative Adversarial Networks

  • 摘要: 针对雷达对抗侦察中脉冲描述字(PDW)数据稀缺及生成质量不足的问题,该文提出时序条件生成对抗网络(Time-CondGAN)。该方法通过多模态条件生成框架融合脉冲序列时域特征与辐射源分类信息,采用双向门控循环单元 (GRU)监督器与特征匹配损失实现时序连续性与统计分布的双重约束。网络架构包含3个核心模块:(1)条件编码网络将调制类型嵌入为128维特征向量,通过时序维度扩展与潜在噪声拼接,实现类别可控生成;(2)多任务判别器联合执行对抗判别与信号分类,通过共享双向GRU-注意力特征提取层捕捉长程依赖关系;(3)时序-统计联合优化器整合对抗损失、监督损失与特征匹配损失,在对抗训练阶段同步更新生成器与判别器参数。实验表明,Time-CondGAN生成的PDW数据在关键时序参数的KL散度较Time-CondGAN平均降低28.25%,显著提升物理合理性;可视化结果证明模型性能满足要求,消融实验证明改进模块的有效性。在下游任务验证中,生成数据使VGG16与LSTM分类器的识别准确率最高提升37.2%,较Time-CondGAN生成数据平均高8.25%(VGG16)与4.2%(LSTM)。
  • 图  1  时序条件对抗生成网络

    图  2  预训练流程

    图  3  对抗训练流程

    图  4  生成器网络

    图  5  判别器网络

    图  6  嵌入器、恢复器与监督器网络

    图  7  真实数据在VGG16以及LSTM识别性能对比

    图  8  TimeGAN以及Time-CondGAN在LSTM识别性能

    图  9  TimeGAN以及Time-CondGAN在VGG16识别性能

    图  10  Time-CondGAN生成结果

    图  11  TimeGAN生成结果

    表  1  实验运行环境

    硬件环境软件环境
    名称型号名称版本
    CPU处理器Inter(R) Xenon(R)Silver 4210RPycharm2020.2.3×64
    GPU显卡NVIDIA GeForce RTX 3090Python3.11
    运行内存32 GBPytorch1.8.0
    操作系统Win7
    下载: 导出CSV

    表  2  AESA雷达工作模式参数范围

    类别 名称 属性 VS HRWS MRWS TWS STT TAS
    波形参数 PRI 范围(μs) 4~10 4~10 50~200 5~200 5~200 5~200
    类型 固定 固定 组变/抖动 组变/抖动/参差 抖动/参差/滑变/正弦 组变/抖动/参差/滑变/正弦
    脉冲参数 PW 范围(μs) 1~3 1~3 1~20 0.1~20 0.1~20 0.1~20
    CF 范围(GHz) 9.5, 10.5 9.5, 10.5 9.5, 10.5 9.5, 10.5 9.5, 10.5 9.5, 10.5
    类型 固定 固定 脉间捷变 脉组捷变 脉组捷变 脉组捷变
    下载: 导出CSV

    表  3  KL散度对比

    参数 Time-CondGAN TimeGAN 相对改进率(%)
    TOA 0.636 0 0.800 0 20.50
    幅度 8.510 7 7.810 0 –8.97
    载频 7.930 0 9.144 8 13.29
    脉宽 4.680 0 9.397 2 50.20
    下载: 导出CSV

    表  4  识别性能分析表(%)

    样本数量VGG16 (真实数据)LSTM (真实数据)VGG16+Time-CondGANLSTM
    +Time-CondGAN
    VGG16+TimeGANLSTM +TimeGAN
    1042.6549.1759.0063.0045.1054.43
    2052.8353.7468.0065.0058.9257.92
    3057.8057.0674.0067.0064.7362.80
    4061.0760.9079.5870.3568.1765.30
    5063.9764.1279.3170.7070.5265.30
    6066.6261.4085.2371.5874.1866.82
    7067.0067.8286.3774.8278.0869.00
    8067.5865.6287.1074.3878.2570.95
    9070.0069.0087.0776.4580.0073.68
    下载: 导出CSV

    表  5  消融实验KL散度对比

    实验组TOA幅度载频脉宽
    A0.349 07.326 111.060 89.708 4
    B1.599 88.419 17.510 89.159 6
    C0.172 07.431 713.981 97.471 6
    D0.892 112.304 29.770 57.508 3
    完整模型0.636 08.510 77.930 04.680 0
    下载: 导出CSV
  • [1] 陈韬伟, 王会源, 马一鸣, 等. 基于复杂网络建模的雷达辐射源信号脉间特征提取[J]. 火力与指挥控制, 2024, 49(12): 77–84,92. doi: 10.3969/j.issn.1002-0640.2024.12.009.

    CHEN Taowei, WANG Huiyuan, MA Yiming, et al. Inter-pulse feature extraction of radar emitter signals and its analysis based on complex network modeling[J]. Fire Control & Command Control, 2024, 49(12): 77–84,92. doi: 10.3969/j.issn.1002-0640.2024.12.009.
    [2] 陈涛, 邱宝传, 肖易寒, 等. 基于点云分割网络的雷达信号分选方法[J]. 电子与信息学报, 2024, 46(4): 1391–1398. doi: 10.11999/JEIT230622.

    CHEN Tao, QIU Baochuan, XIAO Yihan, et al. The radar signal deinterleaving method base on point cloud segmentation network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1391–1398. doi: 10.11999/JEIT230622.
    [3] SHORTEN C and KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60. doi: 10.1186/s40537-019-0197-0.
    [4] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953.
    [5] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [6] MIRZA M and OSINDERO S. Conditional generative adversarial nets[Z]. arXiv preprint arXiv: 1411.1784, 2014. doi: 10.48550/arXiv.1411.1784.
    [7] YOON J, JARRETT D, and VAN DER SCHAAR M. Time-series generative adversarial networks[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 494.
    [8] KHAN S and KUMAR V. A novel hybrid GRU-CNN and residual bias (RB) based RB-GRU-CNN models for prediction of PTB Diagnostic ECG time series data[J]. Biomedical Signal Processing and Control, 2024, 94: 106262. doi: 10.1016/j.bspc.2024.106262.
    [9] WANG Zhongqi, SONG Chong, JIAO Zekun, et al. Synthetic aperture radar deep statistical imaging through diffusion generative model conditional inference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5227717. doi: 10.1109/TGRS.2024.3498442.
    [10] ANG Yihao, HUANG Qiang, BAO Yifan, et al. TSGBench: Time series generation benchmark[J]. Proceedings of the VLDB Endowment, 2023, 17(3): 305–318. doi: 10.14778/3632093.3632097.
    [11] ESKANDARINASAB M R, HAMDI S M, and BOUBRAHIMI S F. ChronoGAN: Supervised and embedded generative adversarial networks for time series generation[C]. 2024 International Conference on Machine Learning and Applications (ICMLA), Miami, USA, 2024: 567–574. doi: 10.1109/ICMLA61862.2024.00083.
    [12] TANG Haocheng, LONG Jing, and WANG Junmei. Auxiliary discrminator sequence generative adversarial networks (ADSeqGAN) for few sample molecule generation[Z]. arXiv preprint arXiv: 2502.16446, 2025. doi: 10.48550/arXiv.2502.16446.
    [13] CHOWDHURY M A, MODEKWE G, and LU Qiugang. Lithium-ion battery capacity prediction via conditional recurrent generative adversarial network-based time-series regeneration[Z]. arXiv preprint arXiv: 2503.12258, 2025. doi: 10.48550/arXiv.2503.12258.
    [14] RUAN Shulan, ZHANG Yong, ZHANG Kun, et al. DAE-GAN: Dynamic aspect-aware Gan for text-to-image synthesis[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13940–13949. doi: 10.1109/ICCV48922.2021.01370.
    [15] YANG Yue, ZHANG Zhuo, MAO Wei, et al. Radar target recognition based on few-shot learning[J]. Multimedia Systems, 2023, 29(5): 2865–2875. doi: 10.1007/s00530-021-00832-3.
    [16] 史松昊, 王晓丹, 杨春晓, 等. 基于跨域小样本学习的SAR图像目标识别方法[J]. 计算机科学, 2024, 51(6A): 230800136. doi: 10.11896/jsjkx.230800136.

    SHI Songhao, WANG Xiaodan, YANG Chunxiao, et al. SAR image target recognition based on cross domain few shot learning[J]. Computer Science, 2024, 51(6A): 230800136. doi: 10.11896/jsjkx.230800136.
    [17] 王玉冰, 程嗣怡, 周一鹏, 等. 基于DS证据理论的机载火控雷达空空工作模式判定[J]. 现代雷达, 2017, 39(5): 79–84. doi: 10.16592/j.cnki.1004-7859.2017.05.017.

    WANG Yubing, CHENG Siyi, ZHOU Yipeng, et al. Air-to-air operation modes recognition of airborne fire control radar based on DS evidence theory[J]. Modern Radar, 2017, 39(5): 79–84. doi: 10.16592/j.cnki.1004-7859.2017.05.017.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  66
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-16
  • 修回日期:  2025-07-22
  • 网络出版日期:  2025-07-30

目录

    /

    返回文章
    返回