高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辅助车辆通信的双智能反射面相移优化与无人机轨迹控制

常宽 张雷 王玉 尚玉龙 陈伟聪 马俊超

常宽, 张雷, 王玉, 尚玉龙, 陈伟聪, 马俊超. 辅助车辆通信的双智能反射面相移优化与无人机轨迹控制[J]. 电子与信息学报. doi: 10.11999/JEIT250274
引用本文: 常宽, 张雷, 王玉, 尚玉龙, 陈伟聪, 马俊超. 辅助车辆通信的双智能反射面相移优化与无人机轨迹控制[J]. 电子与信息学报. doi: 10.11999/JEIT250274
CHANG Kuan, ZHANG Lei, WANG Yu, SHANG Yulong, CHEN Weicong, MA Junchao. Dual-Reconfigurable Intelligent Surface Phase Shift Optimization and Unmanned Aerial Vehicle Trajectory Control for Vehicle Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250274
Citation: CHANG Kuan, ZHANG Lei, WANG Yu, SHANG Yulong, CHEN Weicong, MA Junchao. Dual-Reconfigurable Intelligent Surface Phase Shift Optimization and Unmanned Aerial Vehicle Trajectory Control for Vehicle Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250274

辅助车辆通信的双智能反射面相移优化与无人机轨迹控制

doi: 10.11999/JEIT250274 cstr: 32379.14.JEIT250274
基金项目: 江苏高校‘青蓝工程’(本基金无项目编号),中国博士后科学基金面上项目(2024M750421),国家自然科学基金(62401233),江苏省自然科学基金(BK20241076),常州市5G+工业互联网融合应用重点实验室项目(CM2023015)
详细信息
    作者简介:

    常宽:男,硕士生,研究方向为无人机辅助车联网通信

    张雷:男,副教授,研究方向为智能超表面通信、MIMO、信道估计、强化学习等

    王玉:女,副教授,研究方向为车联网资源分配与调度、智能超表面通信等

    尚玉龙:男,副教授,研究方向为无线通信、数字广播、MIMO、智能反射面等

    陈伟聪:男,博士后,研究方向为分布式智能超表面使能的下一代无线通信等

    马俊超:男,讲师,研究方向为6G车联网网络编码等

    通讯作者:

    张雷 zhlei@jsut.edu.cn

  • 中图分类号: TN92

Dual-Reconfigurable Intelligent Surface Phase Shift Optimization and Unmanned Aerial Vehicle Trajectory Control for Vehicle Communication

Funds: The “Qinglan Project” of Jiangsu Higher Education Institutions, China Postdoctoral Science Foundation General Project (2024M750421), The National Natural Science Foundation of China (62401233), The Natural Science Foundation of Jiangsu Province (BK20241076), Changzhou 5G+ Industrial Internet Integration Application Key Laboratory Project (CM2023015)
  • 摘要: 针对无人机(UAV)携带智能反射面(RIS)与固定RIS共同辅助移动的用户车辆(UE)通信的场景,建立UAV飞行轨迹和双RIS相移联合优化问题,使UE在移动过程中始终保持通信速率最大。由于系统的复杂性和环境的动态性,该文提出一种基于深度确定性策略梯度算法和相移对齐方法来处理连续轨迹和RIS相移的优化问题。仿真结果验证了所提的联合优化算法在1 000个Episode以内便能得到较稳定的奖励值,通过与其它基准方法对比,表明了所提算法可在双RIS部署的环境中比使用随机轨迹和相移算法时通信速率至少可提高3 dB。最后给出了不同基站和RIS的部署位置下的UAV的最优轨迹,并对不同车速下算法的适用性进行了仿真分析。
  • 图  1  UAV搭载RIS辅助车辆通信

    图  2  DDPG模型

    图  3  所提DDPG算法奖励图

    图  4  不同RIS个数下的性能比较

    图  5  不同算法下的性能对比

    图  6  UAV轨迹图

    图  7  更改坐标后UAV的轨迹

    图  8  不同BS和RIS2部署下的奖励图

    图  9  不同的车速下性能对比

    1  基于DDPG的UAV轨迹和RIS相移联合优化算法

     用参数$ {{\boldsymbol{\theta}} ^\mu } $和$ {{\boldsymbol{\theta}} ^Q} $初始化Actor网络$ \mu ( \cdot ) $、Critic网络$ Q( \cdot ) $、Target_
     Actor网络$ \mu '( \cdot ) $和Target_Critic网络$ Q'( \cdot ) $;初始化经验回放池
     Replaybuffer;设置NepsT
     for episode = 1,2,···,Neps do
      初始化环境,初始化两个RIS的相移矩阵,获取初始状态$ {s_t} $;
      for t =1,2,···,T do
       初始化UAV动作的位移矩阵;
       根据当前策略和噪声选择动作$ {a_t} = \mu ({s_t}|{{\boldsymbol{\theta}} ^\mu }) + {N_t} $;
       执行动作$ {a_t} $;
       根据式(19)和式(20)优化的两个RIS相移;
       根据式(11)计算车辆的信息速率;
       根据式(13)计算奖励$ {r_{t'}} $,环境变为$ {s_{t + 1}} $;
       将$ {\text{(}}{s_t},{a_t},{r_{t'}},{s_{t + 1}},{\text{done}}) $存入Replaybuffer中;
       if 训练开始 then
        从Replaybuffer中随机抽取256个样本进行训练;
        根据式(15)更新Critic网络;
        根据式(16)更新Actor网络;
        根据式(17)更新Target网络;
        end if
       end for
     end for
    下载: 导出CSV

    表  1  系统参数

    参数 参数描述 取值
    $ {X^{\max }} $ UAV在x轴方向活动范围 600 m
    $ {Y^{\max }} $ UAV在y轴方向活动范围 400 m
    $ {Z^{\max }} $ UAV在z轴方向最大高度 200 m
    $ {Z^{\min }} $ UAV在z轴方向最低高度 10 m
    $ {x^{\max }},{y^{\max }},{z^{\max }} $ UAV在时隙内最大运动距离 10 m
    $ B $ 带宽 1 MHz
    $ \gamma $ 折现因子 0.99
    $ F $ UAV飞出边界的惩罚 100
    $ {\alpha _{{\text{rb}}}},{\alpha _{{\text{ub}}}} $ 路径损耗指数 2.2
    $ {\alpha _{{\text{cr}}}}{\text{,}}{\alpha _{{\text{uc}}}} $ 路径损耗指数 2.5
    $ T $ 时隙数 100
    $ {N^{{\text{eps}}}} $ 训练轮次 3000
    $ {\sigma ^2} $ 噪声功率 –110 dBm
    M 天线个数 4
    N RIS单元数 40
    v 车辆移动速度 6 m/s
    $ d{\text{r}} $ 天线单元之间的间隔 $ \lambda /2 $
    下载: 导出CSV
  • [1] SHARMA V, BENNIS M, KUMAR R. UAV-assisted heterogeneous networks for capacity enhancement[J]. IEEE Communications Letters, 2016, 20(6): 1207–1210. doi: 10.1109/LCOMM.2016.2553103.
    [2] XIA W, POLESE M, MEZZAVILLA M, et al. Millimeter wave remote UAV control and communications for public safety scenarios[C]. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Boston, USA, 2019: 1-7. doi: 10.1109/SAHCN.2019.8824919.
    [3] WANG Liang, WANG Kezhi, PAN Cunhua, et al. Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 73–84. doi: 10.1109/TCCN.2020.3027695.
    [4] KAUL S, GRUTESER M, RAI V, et al. Minimizing age of information in vehicular networks[C]. 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Salt Lake City, 2011: 350–358. doi: 10.1109/SAHCN.2011.5984917.
    [5] HUANG Wenhuan, YANG Zhaohui, PAN Cunhua, et al. Joint power, altitude, location and bandwidth optimization for UAV with underlaid D2D communications[J]. IEEE Wireless Communications Letters, 2019, 8(2): 524–527. doi: 10.1109/LWC.2018.2878706.
    [6] WANG Liang, WANG Kezhi, PAN Cunhua, et al. Deep reinforcement learning based dynamic trajectory control for UAV-assisted mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2022, 21(10): 3536–3550. doi: 10.1109/TMC.2021.3059691.
    [7] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [8] 林粤伟, 王溢, 张奇勋, 等. 面向6G的通信感知一体化车联网研究综述[J]. 信号处理, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.

    LIN Yuewei, WANG Yi, ZHANG Qixun, et al. Overview of the research on 6G oriented internet of vehicles for integrated sensing and communication[J]. Journal of Signal Processing, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.
    [9] 虞湘宾, 于凯, 钱盼盼. 面向6G移动通信的可重构智能反射表面技术研究综述[J]. 南京航空航天大学学报, 2023, 55(5): 745–756. doi: 10.16356/j.1005-2615.2023.05.001.

    YU Xiangbin, YU Kai, and QIAN Panpan. Overview of reconfigurable intelligent surface for 6G mobile communication[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(5): 745–756. doi: 10.16356/j.1005-2615.2023.05.001.
    [10] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
    [11] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [12] 何艺, 仲伟志, 万诗晴, 等. 智能反射面辅助的MU-MISO车联网毫米波通信联合波束赋形[J]. 信号处理, 2024, 40(2): 336–344. doi: 10.16798/j.issn.1003-0530.2024.02.011.

    HE Yi, ZHONG Weizhi, WAN Shiqing, et al. Joint beamforming for IRS-aided MU-MISO millimeter wave communication of vehicular network[J]. Journal of Signal Processing, 2024, 40(2): 336–344. doi: 10.16798/j.issn.1003-0530.2024.02.011.
    [13] WANG Y, GUAN P, YU H, et al. Reconfigurable intelligent surfaces for energy efficiency in full-duplex communication system[J]. IEEE Transactions on Communications, 2022, 70(5): 3507–3523. doi: 10.1109/TCOMM.2022.3165299.
    [14] WANG Kezhi, CHEN Yunfei, and DI RENZO M. Outage probability of dual-hop selective AF with randomly distributed and fixed interferers[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4603–4616. doi: 10.1109/TVT.2014.2366727.
    [15] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916.
    [16] YANG Yifei, ZHENG Beixiong, ZHANG Shuowen, et al. Intelligent reflecting surface meets OFDM: Protocol design and rate maximization[J]. IEEE Transactions on Communications, 2020, 68(7): 4522–4535. doi: 10.1109/TCOMM.2020.2981458.
    [17] HE Jinglian, YU Kaiqiang, SHI Yuanming, et al. Reconfigurable intelligent surface assisted massive MIMO with antenna selection[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4769–4783. doi: 10.1109/TWC.2021.3133272.
    [18] AL-HILO A, SAMIR M, ELHATTAB M, et al. Reconfigurable intelligent surface enabled vehicular communication: Joint User scheduling and passive beamforming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2333–2345. doi: 10.1109/TVT.2022.3141935.
    [19] DENG Junquan, TIRKKONEN O, FREIJ-HOLLANTI R, et al. Resource allocation and interference management for opportunistic relaying in integrated mmWave/sub-6 GHz 5G networks[J]. IEEE Communications Magazine, 2017, 55(6): 94–101. doi: 10.1109/MCOM.2017.1601120.
    [20] 徐可馨, 隆克平, 陆阳, 等. 可重构智能超表面辅助的非地面网络安全传输与轨迹优化[J]. 电子与信息学报, 2025, 47(2): 296–304. doi: 10.11999/JEIT240981.

    XU Kexin, LONG Keping, LU Yang, et al. Joint secure transmission and trajectory optimization for reconfigurable intelligent surface-aided non-terrestrial networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 296–304. doi: 10.11999/JEIT240981.
    [21] 刘学敏, 钱玉文, 宋耀良, 等. 一种基于无人机与智能反射面的隐蔽通信系统研究[J]. 电子与信息学报, 2025, 47(2): 386–396. doi: 10.11999/JEIT240663.

    LIU Xuemin, QIAN Yuwen, SONG Yaoliang, et al. An intelligent reflecting surface assisted covert communication system with a cooperative unmanned aerial vehicle[J]. Journal of Electronics & Information Technology, 2025, 47(2): 386–396. doi: 10.11999/JEIT240663.
    [22] 仲伟志, 万诗晴, 段洪涛, 等. 一种基于合作协同进化的智能超表面辅助无人机通信系统联合波束成形方法[J]. 电子与信息学报, 2025, 47(2): 334–343. doi: 10.11999/JEIT240561.

    ZHONG Weizhi, WAN Shiqing, DUAN Hongtao, et al. A joint beamforming method based on cooperative co-evolutionary in reconfigurable intelligent surface-assisted unmanned aerial vehicle communication system[J]. Journal of Electronics & Information Technology, 2025, 47(2): 334–343. doi: 10.11999/JEIT240561.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  55
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-08-18
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回