高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低时延工业物联网中移动边缘计算的安全性与可靠性联合优化

胡钰林 喻鑫岚 高伟 朱尧

胡钰林, 喻鑫岚, 高伟, 朱尧. 低时延工业物联网中移动边缘计算的安全性与可靠性联合优化[J]. 电子与信息学报. doi: 10.11999/JEIT250262
引用本文: 胡钰林, 喻鑫岚, 高伟, 朱尧. 低时延工业物联网中移动边缘计算的安全性与可靠性联合优化[J]. 电子与信息学报. doi: 10.11999/JEIT250262
HU Yulin, YU Xinlan, GAO Wei, ZHU Yao. Security and Reliability-Optimal Offloading for Mobile Edge Computing in Low-latency Industrial IoT[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250262
Citation: HU Yulin, YU Xinlan, GAO Wei, ZHU Yao. Security and Reliability-Optimal Offloading for Mobile Edge Computing in Low-latency Industrial IoT[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250262

低时延工业物联网中移动边缘计算的安全性与可靠性联合优化

doi: 10.11999/JEIT250262 cstr: 32379.14.JEIT250262
基金项目: 国家重点研发计划(2023YFE0206600),中央高校基本科研业务费专项资金(2042024kf1006)
详细信息
    作者简介:

    胡钰林:男,教授,博士生导师,研究方向为工业物联网、高可靠低时延通信、无人机通信、移动边缘计算等

    喻鑫岚:男,硕士生,研究方向为移动边缘计算、高可靠低时延通信等

    高伟:男,博士生,研究方向为高可靠低时延通信、联邦学习、智能反射面等

    朱尧:男,教授,博士生导师,研究方向为工业物联网、高可靠低时延通信、物理层安全、移动边缘计算等

    通讯作者:

    胡钰林 yulin.hu@whu.edu.cn

  • 中图分类号: TN929.5

Security and Reliability-Optimal Offloading for Mobile Edge Computing in Low-latency Industrial IoT

Funds: The National Key R&D Plan (2023YFE0206600), The Fundamental Research Funds for the Central Universities (2042024kf1006)
  • 摘要: 在工业物联网(IIoT)场景下,移动边缘计算(MEC)在提供高可靠低时延通信(URLLC)服务的同时,需确保数据传输的安全性。针对多址接入MEC网络中存在潜在窃听者的物理层安全(PLS)增强问题,该文研究了通信与计算阶段的联合优化,以提升系统的整体安全性与可靠性。基于有限码长(FBL)理论,构建了通信阶段MEC服务器与窃听者之间的解码性能差异模型,并利用极值理论(EVT)分析计算阶段的延迟违规概率。在系统极端情况下,推导出端到端泄露错误概率(LFP)的闭式表达式,并将其作为衡量系统联合安全性与可靠性的关键指标。为最小化LFP,该文提出一种高效的资源分配优化算法。具体而言,为了平衡安全性与可靠性,设计一种满足时延约束的通信与计算阶段时间分配方案,并以两阶段时间为优化变量,构建联合优化问题。然而,由于变量间耦合且目标函数非凸,无法直接求解。因此,采用局部线性化与凸松弛技术对问题进行重构,并提出一种基于连续凸近似(SCA)的优化算法来求解。针对任务规模增大时算法收敛性下降的问题,该文提出一种加速SCA(A-SCA)算法。该算法通过分析问题结构,推导了系统最优可靠性对应时间分配策略的闭式表达式,并优化了初始点选择机制。仿真结果验证了所提算法的准确性、收敛性与适应性,同时揭示了安全性与可靠性之间的权衡关系。
  • 图  1  多址接入MEC网络模型与服务帧结构

    图  2  算法性能评估

    图  3  LFP随窃听者的信道增益的变化

    图  4  LFP随服务器的信道增益的变化

    图  5  LFP随任务负载的变化

    图  6  LFP和服务时间随传输功率的变化

    1  基于连续凸近似的时间分配算法

     输入:时间分配向量$ {\hat t_0} = (\hat t_1^{{\text{cm}}},\hat t_2^{{\text{cm}}}, \ldots ,\hat t_K^{{\text{cm}}},\hat t_{}^{{\text{cp}}}) $,迭代索引
     $k = 0$以及收敛阈值${\mu _{{\text{th}}}}$;
     输出:系统最优通信与计算阶段时间分配策略
     $ {t^*} = ({m^*}{T_{\text{s}}},{t^{{\text{cp*}}}}) $;
     (1) 根据$ {{\mathbf{\hat t}}_0} $和式(22)-式(25),构建凸目标函数$ \varepsilon _{{\text{LF}}}^k \triangleq \hat \varepsilon _{{\text{LF}}}^k(t|{\hat t_0}) $;
     (2) 求解重构的凸优化问题${\mathcal{P}_2}$,得到该轮迭代最优时间分配方案
     $ \hat t_k^* $;
     (3) 如果$ |\varepsilon _{{\text{LF}}}^k(\hat t_k^*) - \varepsilon _{{\text{LF}}}^{k - 1}(\hat t_{k - 1}^*)| \le {\mu _{{\text{th}}}} $,跳转到步骤(6);
     (4) $\hat t_{k + 1}^{} = \hat t_k^*$,$k = k + 1$,跳转到步骤(2);
     (5) 通过$m \triangleq (\hat t_1^{{\text{cm*}}},\hat t_2^{{\text{cm*}}}, \cdots ,\hat t_K^{{\text{cm*}}})/{T_{\text{s}}}$计算出非整数通信码长;
     (6) 根据式(28),对各UE通信码长进行比较取整;
     (7) 得到原始问题${\mathcal{P}_1}$的有效解$ {t^*} = ({m^*}{T_{\text{s}}},{t^{{\text{cp*}}}}) $
    下载: 导出CSV

    2  基于加速型连续凸近似的高效时间分配算

     输入:迭代索引$k = 0$以及收敛阈值${\mu _{{\text{th}}}}$;
     输出:系统最优通信与计算阶段时间分配策略
     $ {t^*} = (\hat t_1^{{\text{cm*}}},\hat t_2^{{\text{cm*}}}, \ldots ,\hat t_K^{{\text{cm*}}},\hat t_{}^{{\text{cp*}}}) $;
     (1) 根据式(31)-式(32),构造优化问题${\mathcal{P}_4}$。根据目标函数关于自
     变量单调递减特性,通过二分搜索方法求得最优$ {\hat t_1}^{{\text{cm*}}} $;
     (2) 根据解析表达式(35),计算出问题${\mathcal{P}_3}$的最优解$ {\hat t^{{\text{cm*}}}} $;
     (3) 将$ {\hat t^{{\text{cm*}}}} $作为${\mathcal{P}_2}$迭代的起始点,即$ {\hat t_0} = {\hat t^{{\text{cm*}}}} $。
     (4) 执行算法1。
    下载: 导出CSV
  • [1] PELLE I, PAOLUCCI F, SONKOLY B, et al. Latency-sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-optical network[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(9): 2849–2863. doi: 10.1109/JSAC.2021.3064655.
    [2] 王新奕, 费泽松, 周一青, 等. 面向物联网的通感算智融合: 关键技术与未来展望[J]. 电子与信息学报, 2025, 47(4): 888–908. doi: 10.11999/JEIT240806.

    WANG Xinyi, FEI Zesong, ZHOU Yiqing, et al. Integrated sensing, communication, computation, and intelligence towards IoT: Key technologies and future directions[J]. Journal of Electronics & Information Technology, 2025, 47(4): 888–908. doi: 10.11999/JEIT240806.
    [3] AL-TURJMAN F and ALTURJMAN S. Context-sensitive access in industrial internet of things (IIoT) healthcare applications[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2736–2744. doi: 10.1109/TII.2018.2808190.
    [4] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
    [5] DILLON T, WU Chen, and CHANG E. Cloud computing: Issues and challenges[C]. Proceedings of 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, Australia, 2010: 27–33. doi: 10.1109/AINA.2010.187.
    [6] SUN Gang, WANG Zhiying, SU Hanyu, et al. Profit maximization of independent task offloading in MEC-enabled 5G internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 16449–16461. doi: 10.1109/TITS.2024.3416300.
    [7] ZHONG Liang, LIU Yuyang, DENG Xianjun, et al. Distributed optimization of multi-role UAV functionality switching and trajectory for security task offloading in UAV-assisted MEC[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19432–19447. doi: 10.1109/TVT.2024.3434354.
    [8] SAUTER T and TREYTL A. IoT-enabled sensors in automation systems and their security challenges[J]. IEEE Sensors Letters, 2023, 7(12): 7500904. doi: 10.1109/LSENS.2023.3332404.
    [9] RANAWEERA P, JURCUT A D, and LIYANAGE M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078–1124. doi: 10.1109/COMST.2021.3062546.
    [10] DING Yu, ZHANG Qingqing, LU Weidang, et al. Collaborative communication and computation for secure UAV-enabled MEC against active aerial eavesdropping[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 15915–15929. doi: 10.1109/TWC.2024.3435017.
    [11] MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318.
    [12] SHE Changyang, PAN Cunhua, DUONG T Q, et al. Guest editorial xURLLC in 6G: Next generation ultra-reliable and low-latency communications[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(7): 1963–1968. doi: 10.1109/JSAC.2023.3282543.
    [13] FENG Chen, WANG Huiming, and POOR H V. Reliable and secure short-packet communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1913–1926. doi: 10.1109/TWC.2021.3108042.
    [14] WANG Huiming, YANG Qian, DING Zhiguo, et al. Secure short-packet communications for mission-critical IoT applications[J]. IEEE Transactions on Wireless Communications, 2019, 18(5): 2565–2578. doi: 10.1109/TWC.2019.2904968.
    [15] KOSTINA V and VERDU S. Fixed-length lossy compression in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3309–3338. doi: 10.1109/TIT.2012.2186786.
    [16] KOSTINA V and VERDÚ S. Lossy joint source-channel coding in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2013, 59(5): 2545–2575. doi: 10.1109/TIT.2013.2238657.
    [17] CAO M X, RAMAKRISHNAN N, BERTA M, et al. Channel simulation: Finite blocklengths and broadcast channels[J]. IEEE Transactions on Information Theory, 2024, 70(10): 6780–6808. doi: 10.1109/TIT.2024.3445998.
    [18] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [19] HU Yulin, ZHU Yao, GURSOY M C, et al. SWIPT-enabled relaying in IoT networks operating with finite blocklength codes[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 74–88. doi: 10.1109/JSAC.2018.2872361.
    [20] ZHU Yao, HU Yulin, SCHMEINK A, et al. Energy minimization of mobile edge computing networks with HARQ in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7105–7120. doi: 10.1109/TWC.2022.3154670.
    [21] YANG Helin, XIONG Zehui, ZHAO Jun, et al. Deep reinforcement learning based massive access management for ultra-reliable low-latency communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 2977–2990. doi: 10.1109/TWC.2020.3046262.
    [22] YU Xinlan, ZHU Yao, HU Yulin, et al. Blocklength allocation for security-enhanced MEC with dependency-aware tasks[C]. Proceedings of 2023 International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2023: 761–766. doi: 10.1109/WCSP58612.2023.10404666.
    [23] BENNIS M, DEBBAH M, and POOR H V. Ultrareliable and low-latency wireless communication: Tail, risk, and scale[J]. Proceedings of the IEEE, 2018, 106(10): 1834–1853. doi: 10.1109/JPROC.2018.2867029.
    [24] SAMARAKOON S, BENNIS M, SAAD W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications[J]. IEEE Transactions on Communications, 2020, 68(2): 1146–1159. doi: 10.1109/TCOMM.2019.2956472.
    [25] LIU Chenfeng, BENNIS M, DEBBAH M, et al. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing[J]. IEEE Transactions on Communications, 2019, 67(6): 4132–4150. doi: 10.1109/TCOMM.2019.2898573.
    [26] MAO Bomin, LIU Jiajia, WU Yingying, et al. Security and privacy on 6G network edge: A survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1095–1127. doi: 10.1109/COMST.2023.3244674.
    [27] ILLI E, QARAQE M, ALTHUNIBAT S, et al. Physical layer security for authentication, confidentiality, and malicious node detection: A paradigm shift in securing IoT networks[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 347–388. doi: 10.1109/COMST.2023.3327327.
    [28] SOLAIJA M S J, SALMAN H, and ARSLAN H. Towards a unified framework for physical layer security in 5G and beyond networks[J]. IEEE Open Journal of Vehicular Technology, 2022, 3: 321–343. doi: 10.1109/OJVT.2022.3183218.
    [29] HE Xiaofan, JIN Richeng, and DAI Huaiyu. Physical-layer assisted secure offloading in mobile-edge computing[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 4054–4066. doi: 10.1109/TWC.2020.2979456.
    [30] BAI Tong, WANG Jingjing, REN Yong, et al. Energy-efficient computation offloading for secure UAV-edge-computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6074–6087. doi: 10.1109/TVT.2019.2912227.
    [31] XU Jie and YAO Jianping. Exploiting physical-layer security for multiuser multicarrier computation offloading[J]. IEEE Wireless Communications Letters, 2019, 8(1): 9–12. doi: 10.1109/LWC.2018.2845882.
    [32] ZHU Yao, YUAN Xiaopeng, HU Yulin, et al. Trade reliability for security: Leakage-failure probability minimization for machine-type communications in URLLC[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(7): 2123–2137. doi: 10.1109/JSAC.2023.3280960.
    [33] ZHU Yao, HU Yulin, YANG Tianyu, et al. Reliability-optimal offloading in low-latency edge computing networks: Analytical and reinforcement learning based designs[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6058–6072. doi: 10.1109/TVT.2021.3073791.
    [34] ZHAO Xiaoyu, CHEN Wei, and POOR H V. Achieving extremely low-latency in industrial internet of things: Joint finite blocklength coding, resource block matching, and performance analysis[J]. IEEE Transactions on Communications, 2021, 69(10): 6529–6544. doi: 10.1109/TCOMM.2021.3097727.
    [35] SHI Chenhao, HU Yulin, ZHU Yao, et al. Security-aware energy-efficient design for mobile edge computing network operating with finite blocklength codes[J]. EURASIP Journal on Wireless Communications and Networking, 2024, 2024(1): 67. doi: 10.1186/s13638-024-02395-z.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  39
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-11
  • 修回日期:  2025-08-05
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回