高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合CNN-LSTM的硬件木马旁路检测方法

周康 侯波 王力纬 雷登云 罗永震 黄中铠

周康, 侯波, 王力纬, 雷登云, 罗永震, 黄中铠. 融合CNN-LSTM的硬件木马旁路检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT250241
引用本文: 周康, 侯波, 王力纬, 雷登云, 罗永震, 黄中铠. 融合CNN-LSTM的硬件木马旁路检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT250241
ZHOU Kang, HOU Bo, WANG Liwei, LEI Dengyun, LUO Yongzhen, HUANG Zhongkai. A CNN-LSTM Fusion-Based Method for Detecting Hardware Trojan Bypasses[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250241
Citation: ZHOU Kang, HOU Bo, WANG Liwei, LEI Dengyun, LUO Yongzhen, HUANG Zhongkai. A CNN-LSTM Fusion-Based Method for Detecting Hardware Trojan Bypasses[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250241

融合CNN-LSTM的硬件木马旁路检测方法

doi: 10.11999/JEIT250241 cstr: 32379.14.JEIT250241
基金项目: 国家自然科学基金(62204062),广东省自然科学基金(2023A1515011295)
详细信息
    作者简介:

    周康:男,硕士生,研究方向为硬件木马设计与检测

    侯波:男,高级工程师,研究方向为集成电路硬件安全及可靠性

    王力纬:男,研究员,研究方向为集成电路硬件安全及可靠性

    雷登云:男,副教授,研究方向为数字集成电路设计及安全性分析

    罗永震:男,工程师,研究方向为集成电路硬件安全及可靠性

    黄中铠:男,工程师,研究方向为集成电路硬件安全及可靠性

    通讯作者:

    侯波 houbo@ceprei.com

  • 中图分类号: TN710;TP18

A CNN-LSTM Fusion-Based Method for Detecting Hardware Trojan Bypasses

Funds: The National Natural Science Foundation of China (62204062), GuangDong Basic and Applied Basic Research Foundation (2023A1515011295)
  • 摘要: 随着集成电路设计与制造全球化,通过供应链植入硬件木马的潜在威胁日益显著。传统旁路检测方法依赖人工特征提取,易受噪声干扰且泛化能力不足,导致检测耗时且准确率不高。为此,该文提出一种基于一维卷积神经网络(CNN)及其与长短期记忆网络(LSTM)的组合架构(1D-CNN-LSTM)的硬件木马旁路检测方法,分别从局部空间特征与时序依赖关系两方面捕获硬件木马动态功耗信号特征,构建算法模型进行硬件木马检测。另外为了提高检测效率和算法鲁棒性,本文结合硬件木马特征对瞬态功耗原始数据进行预处理,并引入高斯噪声进行样本增强。以流片后的ASIC芯片为对象,开展硬件木马检测实验,结果显示经数据预处理后,1D-CNN-LSTM模型的训练效率提升近10倍,算法在四分类任务中的整体检测精度达到99.6%。论文所提出的方法可有效降低计算资源消耗、消除噪声干扰并实现高精度检测。
  • 图  1  最大池化和平均池化运算过程

    图  2  长短期记忆神经网络的内部结构

    图  3  本文检测流程图

    图  4  本文一维卷积神经网络结构图

    图  5  原始功耗数据和预处理后的功耗数据

    图  6  模型在测试集上的混淆矩阵

    表  1  训练集、测试集和验证集各类样本数量

    无木马木马1木马2木马3
    训练集820784816780
    测试集194205195206
    验证集196203197204
    下载: 导出CSV

    表  2  1D-CNN-LSTM模型分类结果:各类别精确率、召回率与F1分数(%)

    类别精确率召回率F1值
    原始芯片10099.599.7
    木马1100100100
    木马299.010099.5
    木马399.599.099.2
    下载: 导出CSV

    表  3  文献[1619]所提方法与本文方法对比

    数据集 方法 检测准确率(%) F1分数(%)
    文献[16] Trust-Hub上s444 基准测试电路 DANN 95.7 95.7
    文献[17] Trust-Hub上s9234测试电路仿真得到的电流信息 PCA-LSTM 98.0 99.0
    文献[18] IEEE数据集“Hardware Trojan Power & EM Side-Channel”,包含正常与木马样本,每个样本由2500个数据点的向量构成,包含功耗与电磁特征 Siamese CNN 86.8 87.1
    Siamese GRU 83.6 84.2
    Siamese CNN 73.5 74.3
    文献[19] 基于 FPGA 的 AES 加密模块,在其上嵌入了4种不同类型的硬件木马,包含5类数据(包括无木马和4种不同木马) CWT-改进
    ConvNeXt
    89.6 89.7
    本文 定制ASIC无木马(原始芯片)以及木马芯片各40片,每一片木马芯片中包含3种木马电路,共包含4类旁路数据 CNN-LSTM 99.6 99.6
    下载: 导出CSV
  • [1] JACOB N, MERLI D, HEYSZL J, et al. Hardware trojans: Current challenges and approaches[J]. IET Computers & Digital Techniques, 2014, 8(6): 264–273. doi: 10.1049/iet-cdt.2014.0039.
    [2] 黄钊, 王泉, 杨鹏飞. 硬件木马: 关键问题研究进展及新动向[J]. 计算机学报, 2019, 42(5): 993–1017. doi: 10.11897/SP.J.1016.2019.00993.

    HUANG Zhao, WANG Quan, and YANG Pengfei. Hardware trojan: Research progress and new trends on key problems[J]. Chinese Journal of Computers, 2019, 42(5): 993–1017. doi: 10.11897/SP.J.1016.2019.00993.
    [3] 许强, 蒋兴浩, 姚立红, 等. 硬件木马检测与防范研究综述[J]. 网络与信息安全学报, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160.

    XU Qiang, JIANG Xinghao, YAO Lihong, et al. Overview of the detection and prevention study of hardware trojans[J]. Chinese Journal of Network and Information Security, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160.
    [4] 倪林, 李少青, 马瑞聪, 等. 硬件木马检测与防护[J]. 数字通信, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016.

    NI Lin, LI Shaoqing, MA Ruicong, et al. Hardware Trojans detection and protection[J]. Digital Communication, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016.
    [5] INOUE T, HASEGAWA K, YANAGISAWA M, et al. Designing hardware trojans and their detection based on a SVM-based approach[C]. Proceedings of 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 2017: 811–814. doi: 10.1109/ASICON.2017.8252600.
    [6] 冯燕, 陈岚. 基于路径特征和支持向量机算法的硬件木马检测技术[J]. 电子与信息学报, 2023, 45(6): 1921–1932. doi: 10.11999/JEIT220500.

    FENG Yan and CHEN Lan. Hardware trojan detection based on path feature and support vector machine[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1921–1932. doi: 10.11999/JEIT220500.
    [7] PAN Zhixin and MISHRA P. Hardware trojan detection using shapley ensemble boosting[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 141–159. doi: 10.1007/978-3-031-46479-9_7.
    [8] DTHAR T, DAS R, GIRI C, et al. Threshold analysis using probabilistic xgboost classifier for hardware trojan detection[J]. Journal of Electronic Testing, 2023, 39(4): 447–463. doi: 10.1007/s10836-023-06079-2.
    [9] PUSPA S N, ENAN A, MAJUMDAR R, et al. An AI-enabled side channel power analysis based hardware trojan detection method for securing the integrated circuits in cyber-physical systems[EB/OL]. https://arxiv.org/abs/2411.12721, 2024.
    [10] CYHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. doi: 10.1109/TGRS.2016.2584107.
    [11] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [12] SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683.
    [13] KALASH M, ROCHAN M, MOHAMMED N, et al. Malware classification with deep convolutional neural networks[C]. Proceedings of 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 2018: 1–5. doi: 10.1109/NTMS.2018.8328749.
    [14] LI Qing, CAI Weidong, WANG Xiaogang, et al. Medical image classification with convolutional neural network[C]. Proceedings of 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, Singapore, 2014: 844–848. doi: 10.1109/ICARCV.2014.7064414.
    [15] SONG Tengfei, ZHENG Wenming, SONG Peng, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 532–541. doi: 10.1109/TAFFC.2018.2817622.
    [16] MOHANRAJ P, PARAMASIVAM S, and SATHYAMOORTHY P. A power traces based hardware trojan detection using deep artificial neural network[J]. Analog Integrated Circuits and Signal Processing, 2025, 123(1): 3. doi: 10.1007/s10470-025-02351-x.
    [17] 胡涛, 佃松宜, 蒋荣华. 基于长短时记忆神经网络的硬件木马检测[J]. 计算机工程, 2020, 46(7): 110–115. doi: 10.19678/j.issn.1000-3428.0055589.

    HU Tao, DIAN Songyi, and JIANG Ronghua. Hardware trojan detection based on long short-term memory neural network[J]. Computer Engineering, 2020, 46(7): 110–115. doi: 10.19678/j.issn.1000-3428.0055589.
    [18] NASR A, MOHAMED K, ELSHENAWY A, et al. A Siamese deep learning framework for efficient hardware Trojan detection using power side-channel data[J]. Scientific Reports, 2024, 14(1): 13013. doi: 10.1038/s41598-024-62744-2.
    [19] GAO Yuchan, SU Jing, LI Jia, et al. A neural network framework based on ConvNeXt for side‐channel hardware Trojan detection[J]. ETRI Journal, 2025, 47(2): 338–349. doi: 10.4218/etrij.2023-0448.
    [20] BELHUMEUR P N, HESPANHA J P, and KRIEGMAN D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720. doi: 10.1109/34.598228.
    [21] XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. https://arxiv.org/abs/1505.00853, 2015.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  28
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-07-24
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回