高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合G-DPN与近红外光谱的铝矾土品质参数协同检测方法研究

邹亮 任柯龙 吴浩 徐志彬 谭智毅 雷萌

邹亮, 任柯龙, 吴浩, 徐志彬, 谭智毅, 雷萌. 融合G-DPN与近红外光谱的铝矾土品质参数协同检测方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250240
引用本文: 邹亮, 任柯龙, 吴浩, 徐志彬, 谭智毅, 雷萌. 融合G-DPN与近红外光谱的铝矾土品质参数协同检测方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250240
ZOU Liang, REN Kelong, WU Hao, XU Zhibin, TAN Zhiyi, LEI Meng. A Collaborative Detection Method for Bauxite Quality Parameters Based on the Fusion of G-DPN and Near-Infrared Spectroscopy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250240
Citation: ZOU Liang, REN Kelong, WU Hao, XU Zhibin, TAN Zhiyi, LEI Meng. A Collaborative Detection Method for Bauxite Quality Parameters Based on the Fusion of G-DPN and Near-Infrared Spectroscopy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250240

融合G-DPN与近红外光谱的铝矾土品质参数协同检测方法研究

doi: 10.11999/JEIT250240 cstr: 32379.14.JEIT250240
基金项目: 国家自然科学基金(62473368, 62373360),科技创新2030——新一代人工智能重大项目(2020AAA0107300),江苏省研究生科研创新计划(2024WLJCRCZL141,KYCX24_2779)
详细信息
    作者简介:

    邹亮:男,副教授,博士生导师,研究方向为统计信号处理和人工智能

    任柯龙:男,硕士生,研究方向为深度学习与光谱分析

    吴浩:男,研究方向为深度学习与光谱分析

    徐志彬:男,高级工程师,研究方向为智能检测

    谭智毅:男,正高级工程师,研究方向为智能检测

    雷萌:女,副教授,研究方向为机器学习与数据挖掘

    通讯作者:

    雷萌 lmsiee@cumt.edu.cn

  • 中图分类号: TP2

A Collaborative Detection Method for Bauxite Quality Parameters Based on the Fusion of G-DPN and Near-Infrared Spectroscopy

Funds: The National Natural Science Foundation of China (62473368, 62373360), The Scientific Innovation 2030 Major Project for New Generation of AI (2020AAA0107300), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (2024WLJCRCZL141, KYCX24_2779)
  • 摘要: 铝矾土作为关键的非金属矿产资源,在铝工业等领域具有不可替代的作用。为实现资源高效利用并解决低品位矿石冶炼浪费问题,精确测定其品质参数至关重要。传统化学分析方法存在操作流程复杂、检测周期长、成本高昂等局限,而现有快检技术多聚焦单一参数预测,忽略参数间相关性。为此,该文提出一种基于近红外光谱的多指标协同检测模型——门控深度点卷积网络(G-DPN)。该模型创新性地采用大尺寸卷积核深度卷积提取单通道长距离相关特征,结合点卷积实现通道信息融合,并引入空间注意力机制强化关键特征表达能力。进一步设计定制门控模块,通过正交约束分离共享特征与任务特定特征,实现二者的动态加权融合,同时对参数标签归一化以消除量纲差异,有效构建光谱特征与品质参数间的非线性映射关系。基于424个铝矾土样本的实验表明,G-DPN在铝含量、硅含量和铁含量预测中的${R^2}$值分别达到0.9226, 0.93770.9683,性能显著优于传统机器学习方法及多种深度学习模型。本研究证实近红外光谱技术结合G-DPN模型在铝矾土品质分析中具有显著应用价值,为矿产资源高效利用提供了新的技术支撑。
  • 图  1  部分铝矾土样本近红外光谱图

    图  2  G-DPN网络结构示意图

    图  3  DPN模块结构示意图

    图  4  大尺寸卷积核与普通卷积核有效感受野对比

    图  5  sSE模块结构示意图

    图  6  CGC模块结构示意图

    图  7  基于马氏距离剔除前后箱线图对比

    图  8  铝矾土品质参数相关性散点图

    图  9  铝矾土品质参数真实值与预测值关系图

    图  10  模型性能比较图

    表  1  实验与样本分布参数

    项目描述
    样本处理干燥、破碎、研磨、筛分
    样本粒径0.15 mm
    Al2O3含量(%)31.1~54.62
    SiO2含量(%)0.23~21.29
    Fe2O3含量(%)4.19~36.52
    下载: 导出CSV

    表  2  PLSR在异常值剔除后的5折交叉验证平均结果分析

    成分指标方法RMSEMAE${R^2}$
    Al2O3(%)/1.57181.08720.7490
    马氏距离1.51601.01900.7630
    SiO2(%)/1.60720.99600.8246
    马氏距离1.50440.92320.8472
    Fe2O3(%)/1.71951.01450.9174
    马氏距离1.47700.91480.9387
    下载: 导出CSV

    表  3  PLSR结合SNV的5折交叉验证平均结果分析

    成分指标方法RMSEMAE${R^2}$
    Al2O3(%)/1.65921.15130.7161
    SNV1.51601.01900.7630
    SiO2(%)/1.93531.28990.7471
    SNV1.50440.92320.8472
    Fe2O3(%)/1.52770.98360.9344
    SNV1.47700.91480.9387
    下载: 导出CSV

    表  4  传统机器学习模型与本研究方法结果对比

    成分指标方法RMSE±stdMAE±std${R^2}$±std
    Al2O3(%)PLSR1.5160±0.04111.0190±0.04560.7630±0.0132
    SVR1.5950±0.07920.9998±0.02050.7376±0.0271
    RF1.5261±0.09630.8722±0.02690.7598±0.0292
    本文0.8729±0.05010.5638±0.00850.9226±0.0080
    SiO2(%)PLSR1.5044±0.03540.9232±0.03710.8472±0.0088
    SVR1.4004±0.04860.7628±0.02480.8676±0.0092
    RF1.7592±0.07660.8854±0.04100.7910±0.0168
    本文0.9582±0.02510.5455±0.01100.9377±0.0034
    Fe2O3(%)PLSR1.4770±0.05730.9148±0.03310.9387±0.0051
    SVR1.5999±0.05380.8944±0.01190.9280±0.0054
    RF1.6394±0.08230.7967±0.02010.9244±0.0072
    本文1.0655±0.02910.5557±0.00770.9683±0.0017
    下载: 导出CSV

    表  5  深度学习模型与本研究方法结果比较

    成分指标 方法 RMSE±std MAE±std ${R^2}$±std
    Al2O3(%) ResNet 1.4541±0.1267 1.1057±0.0709 0.7819±0.0435
    Unet 1.0497±0.0795 0.5330±0.0243 0.8666±0.0152
    Unet3+ 1.2069±0.1867 0.5827±0.0424 0.8498±0.0389
    PaBATunNet 1.1558±0.0438 0.8126±0.0423 0.8620±0.0106
    MOA-Unet 0.9002±0.0536 0.5511±0.0175 0.9161±0.0099
    MG-Unet 0.9182±0.0579 0.5617±0.0099 0.9181±0.0104
    本文 0.8729±0.0501 0.5638±0.0085 0.9226±0.0080
    SiO2(%) ResNet 1.7682±0.1056 1.1041±0.0644 0.7889±0.0276
    Unet 1.2057±0.0937 0.5798±0.0377 0.8756±0.0141
    Unet3+ 1.2460±0.1167 0.6128±0.0424 0.8952±0.0191
    PaBATunNet 1.2685±0.0339 0.7252±0.0242 0.8912±0.0058
    MOA-Unet 1.1463±0.0605 0.6171±0.0258 0.9107±0.0094
    MG-Unet 1.1416±0.0740 0.6063±0.0248 0.9112±0.0132
    本文 0.9582±0.0251 0.5455±0.0110 0.9377±0.0034
    Fe2O3(%) ResNet 1.2153±0.1795 0.8534±0.0965 0.9585±0.0160
    Unet 1.2518±0.1274 0.5613±0.0398 0.9596±0.0082
    Unet3+ 1.2466±0.1087 0.5373±0.0280 0.9563±0.0072
    PaBATunNet 1.1840±0.0195 0.7347±0.0217 0.9605±0.0018
    MOA-Unet 1.1466±0.0815 0.5729±0.0236 0.9632±0.0052
    MG-Unet 1.1116±0.0603 0.5578±0.0297 0.9653±0.0037
    本文 1.0655±0.0291 0.5557±0.0077 0.9683±0.0017
    下载: 导出CSV

    表  6  消融实验

    成分指标方法RMSEMAE${R^2}$
    Al2O3(%)DPN(k=3)1.08590.64660.8783
    DPN(k=51)0.98660.58870.8996
    DPN+sSE0.97380.57770.9022
    DPN+sSE+多任务0.95330.57630.9063
    DPN+sSE+CGC0.87290.56380.9226
    SiO2(%)DPN(k=3)1.16570.65660.9082
    DPN(k=51)1.11140.59050.9165
    DPN+sSE1.06700.56720.9231
    DPN+sSE+多任务1.04880.55990.9257
    DPN+sSE+CGC0.95820.54550.9377
    Fe2O3(%)DPN(k=3)1.28850.68350.9533
    DPN(k=51)1.14230.56790.9633
    DPN+sSE1.14200.58050.9633
    DPN+sSE+多任务1.07340.56730.9674
    DPN+sSE+CGC1.06550.55570.9683
    下载: 导出CSV
  • [1] LYU Fei, HU Yuehua, WANG Li, et al. Dealkalization processes of bauxite residue: A comprehensive review[J]. Journal of Hazardous Materials, 2021, 403: 123671. doi: 10.1016/j.jhazmat.2020.123671.
    [2] ZHOU Guotao, WANG Yilin, QI Tiangui, et al. Toward sustainable green alumina production: A critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109433. doi: 10.1016/j.jece.2023.109433.
    [3] CHAO Xi, ZHANG Ting’an, LV Guozhi, et al. Comprehensive application technology of bauxite residue treatment in the ecological environment: A review[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 209–214. doi: 10.1007/s00128-022-03478-7.
    [4] KAR M K, ӦNAL M A R, and BORRA C R. Alumina recovery from bauxite residue: A concise review[J]. Resources, Conservation and Recycling, 2023, 198: 107158. doi: 10.1016/j.resconrec.2023.107158.
    [5] WU Lin, ZHANG Jie, HUANG Zhilong, et al. Extraction of lithium as lithium phosphate from bauxite mine tailings via mixed acid leaching and chemical precipitation[J]. Ore Geology Reviews, 2023, 160: 105621. doi: 10.1016/j.oregeorev.2023.105621.
    [6] DE AZEVEDO A R G, MARVILA M T, DE OLIVEIRA M A B, et al. Perspectives for the application of bauxite wastes in the development of alternative building materials[J]. Journal of Materials Research and Technology, 2022, 20: 3114–3125. doi: 10.1016/j.jmrt.2022.08.092.
    [7] HARMON R S. Laser-induced breakdown spectroscopy in mineral exploration and ore processing[J]. Minerals, 2024, 14(7): 731. doi: 10.3390/min14070731.
    [8] MASSOUD A, ABDOU F S, and YOUSIF M. Evaluation of mineral compositions of surface and subsurface rock samples by neutron activation analysis[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(3): 528–545. doi: 10.1080/03067319.2020.1862095.
    [9] TSUCHIKAWA S, MA Te, and INAGAKI T. Application of near-infrared spectroscopy to agriculture and forestry[J]. Analytical Sciences, 2022, 38(4): 635–642. doi: 10.1007/s44211-022-00106-6.
    [10] 黄志伟, 郭拓, 黄文静, 等. 近红外光谱技术在名贵中药材质量评价中的研究进展[J]. 中草药, 2022, 53(20): 6328–6336. doi: 10.7501/j.issn.0253-2670.2022.20.003.

    HUANG Zhiwei, GUO Tuo, HUANG Wenjing, et al. Research progress of near-infrared spectroscopy in quality evaluation of valuable Chinese medicinal materials[J]. Chinese Traditional and Herbal Drugs, 2022, 53(20): 6328–6336. doi: 10.7501/j.issn.0253-2670.2022.20.003.
    [11] 李敬岩, 褚小立, 陈瀑, 等. 化学计量学赋能现代光谱分析技术—理论、仪器和应用进展[J]. 冶金分析, 2024, 44(10): 1–9. doi: 10.13228/j.boyuan.issn1000-7571.012513.

    LI Jingyan, CHU Xiaoli, CHEN Pu, et al. Modern spectral analysis technology empowered by chemometrics: Theory, instrument and application progress[J]. Metallurgical Analysis, 2024, 44(10): 1–9. doi: 10.13228/j.boyuan.issn1000-7571.012513.
    [12] ZHANG Wenwen, KASUN L C, WANG Qijie, et al. A review of machine learning for near-infrared spectroscopy[J]. Sensors, 2022, 22(24): 9764. doi: 10.3390/s22249764.
    [13] CARVALHO J K, MOURA-BUENO J M, RAMON R, et al. Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in Southern Brazil[J]. Geoderma Regional, 2022, 29: e00530. doi: 10.1016/j.geodrs.2022.e00530.
    [14] AMSARAJ R and MUTTURI S. Support vector machine-based rapid detection and quantification of butter yellow adulteration in mustard oil using NIR spectra[J]. Infrared Physics & Technology, 2023, 129: 104543. doi: 10.1016/j.infrared.2023.104543.
    [15] 翁士状, 储昭结, 王满琴, 等. 反射光谱结合光谱基二维卷积回归网络快速检测食用油中饱和脂肪酸[J]. 光谱学与光谱分析, 2022, 42(5): 1490–1496. doi: 10.3964/j.issn.1000-0593(2022)05-1490-07.

    WENG Shizhuang, CHU Zhaojie, WANG Manqin, et al. Reflectance spectroscopy for accurate and fast analysis of saturated fatty acid of edible oil using spectroscopy-based 2D convolution regression network[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1490–1496. doi: 10.3964/j.issn.1000-0593(2022)05-1490-07.
    [16] YUAN Quan, WANG Jiajun, ZHENG Mingwei, et al. Hybrid 1D-CNN and attention-based Bi-GRU neural networks for predicting moisture content of sand gravel using NIR spectroscopy[J]. Construction and Building Materials, 2022, 350: 128799. doi: 10.1016/j.conbuildmat.2022.128799.
    [17] HE Tianyu, SHI Yabo, CUI Enzhong, et al. Rapid detection of multi-indicator components of classical famous formula Zhuru Decoction concentration process based on fusion CNN-LSTM hybrid model with the near-infrared spectrum[J]. Microchemical Journal, 2023, 195: 109438. doi: 10.1016/j.microc.2023.109438.
    [18] ZHANG Yu and YANG Qiang. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586–5609. doi: 10.1109/tkde.2021.3070203.
    [19] ZOU Liang, YU Xinhui, LI Ming, et al. Nondestructive identification of coal and gangue via near-infrared spectroscopy based on improved broad learning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8043–8052. doi: 10.1109/tim.2020.2988169.
    [20] DING Xiaohan, ZHANG Xiangyu, HAN Jungong, et al. Scaling up your kernels to 31×31: Revisiting large kernel design in CNNs[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11953–11965. doi: 10.1109/cvpr52688.2022.01166.
    [21] LUO Donghao and WANG Xue. ModernTCN: A modern pure convolution structure for general time series analysis[C]. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024.
    [22] XU Shifan, XU Zhibin, ZHENG Jiannan, et al. Where does the crude oil originate? The role of near-infrared spectroscopy in accurate source detection[J]. Memetic Computing, 2024, 16(3): 429–443. doi: 10.1007/s12293-024-00425-3.
    [23] TANG Hongyan, LIU Junning, ZHAO Ming, et al. Progressive Layered Extraction (PLE): A novel Multi-task learning (MTL) model for personalized recommendations[C]. The 14th ACM Conference on Recommender Systems, Virtual Event, Brazil, 2020: 269–278. doi: 10.1145/3383313.3412236.
    [24] ZOU Liang, QIAO Jiahui, YU Xinhui, et al. Intelligent proximate analysis of coal based on near-infrared spectroscopy and multioutput deep learning[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 1398–1410. doi: 10.1109/tai.2023.3296714.
    [25] YU Shui, HUAN Kewei, LIU Xiaoxi, et al. Quantitative model of near infrared spectroscopy based on pretreatment combined with parallel convolution neural network[J]. Infrared Physics & Technology, 2023, 132: 104730. doi: 10.1016/j.infrared.2023.104730.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  90
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-06-29
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回