高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成JFET续流二极管的低开关损耗双沟槽SiC MOSFET

高升 章先锋 陈秋锐 陈伟中 张红升

高升, 章先锋, 陈秋锐, 陈伟中, 张红升. 集成JFET续流二极管的低开关损耗双沟槽SiC MOSFET[J]. 电子与信息学报. doi: 10.11999/JEIT250237
引用本文: 高升, 章先锋, 陈秋锐, 陈伟中, 张红升. 集成JFET续流二极管的低开关损耗双沟槽SiC MOSFET[J]. 电子与信息学报. doi: 10.11999/JEIT250237
GAO Sheng, ZHANG Xianfeng, CHEN Qiurui, CHEN Weizhong, ZHANG Hongsheng. Low Switching Loss Double Trench SiC MOSFET with Integrated JFET Continuity Diode[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250237
Citation: GAO Sheng, ZHANG Xianfeng, CHEN Qiurui, CHEN Weizhong, ZHANG Hongsheng. Low Switching Loss Double Trench SiC MOSFET with Integrated JFET Continuity Diode[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250237

集成JFET续流二极管的低开关损耗双沟槽SiC MOSFET

doi: 10.11999/JEIT250237 cstr: 32379.14.JEIT250237
基金项目: 国家自然科学基金(62404026),重庆市自然科学基金(CSTB2023NSCQ-MSX0475)
详细信息
    作者简介:

    高升:男,讲师,研究方向为宽禁带半导体器件设计、制备及可靠性研究

    章先锋:男,硕士生,研究方向为SiC MOSFET设计

    陈秋锐:男,硕士生,研究方向为SiC MOSFET可靠性研究

    陈伟中:男,副教授,研究方向为功率半导体器件设计

    张红升:男,教授,研究方向为集成电路设计

    通讯作者:

    高升 gaosheng@cqupt.edu.cn

  • 中图分类号: TN386

Low Switching Loss Double Trench SiC MOSFET with Integrated JFET Continuity Diode

Funds: The National Natural Science Foundation of China (62404026), The General Program of National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0475)
  • 摘要: 传统双沟槽碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)在高频开关电路和反向续流应用中显现出显著的性能瓶颈,主要表现为开关损耗较高、反向导通电压偏大、反向恢复电荷过多,以及长时间反向续流易引发双极退化等问题。为突破这些技术限制,该文采用TCAD仿真技术,基于PN结空间电荷区内能带弯曲的物理机制,设计一种集成结型场效应晶体管(JFET)的双沟槽SiC MOSFET (IJ-MOS)。与传统SiC MOSFET (CON-MOS)相比,IJ-MOS在性能上取得了显著提升:其反向导通电压从CON-MOS的2.92 V降至1.83 V,反向恢复电荷减少43.6%,反向恢复峰值电流下降31.6%,总开关损耗削减24.2%。此外,IJ-MOS通过有效抑制反向续流时体二极管的激活,显著降低了双极退化的发生概率,从而增强了器件的长期可靠性。这一新型设计使IJ-MOS成为高频开关电路和反向续流应用中更为优越的解决方案。
  • 图  1  CON-MOS和IJ-MOS的横截面示意图

    图  2  IJ-MOS的导带能量特性

    图  3  CON-MOS和IJ-MOS的导通特性

    图  4  WC2与CSL对反向导通电流的影响

    图  5  CON-MOS和IJ-MOS的击穿特性

    图  6  CON-MOS和IJ-MOS的电容曲线

    图  7  CON-MOS和IJ-MOS的反向恢复特性

    图  8  CON-MOS和IJ-MOS的开关特性

    图  9  CON-MOS和IJ-MOS的栅电荷特性

    图  10  IJ-MOS的简化制造流程示意图

    表  1  IJ-MOS和CON-MOS主要参数

    器件参数 IJ-MOS CON-MOS
    沟槽栅深度TG(μm) 1 1
    栅宽WG(μm) 0.3 1
    P-shield区厚度TP(μm) 2.8 2.8
    栅氧化层深度TO(μm) 1.55 1.05
    JFET区宽度WJ(μm) 2 2
    沟道一区宽度WC1(μm) 0.2
    沟道二区宽度WC2(μm) 0.3
    CSL层厚度TCSL(μm) 3 3
    总外延层厚度(μm) 12 12
    P-shield掺杂浓度(cm–3) 1×1018 1×1018
    P+掺杂浓度(cm–3) 1×1019 1×1019
    N+掺杂浓度(cm–3) 1×1019 1×1019
    P-body掺杂浓度(cm–3) 1×1017 1×1017
    CSL掺杂浓度(cm–3) 5×1016 5×1016
    N-drift掺杂浓度(cm–3) 3×1015 3×1015
    元胞宽度WCELL(μm) 4.2 4.2
    下载: 导出CSV

    表  2  CON-MOS 和 IJ-MOS 的主要特性

    器件特性 IJ-MOS CON-MOS
    VON(V) 1.83 2.92
    BV(V) 1998 1566
    Ron,sp(mΩ/cm2) 4.68 4.62
    BFOM(BV2/Ron,sp) (MW/cm2) 0.85 0.53
    IRRM(A/cm2) 95 139
    QRR(μC/cm2) 1.29 2.29
    QGD(nC/cm2) 101 243
    EON(mJ/cm2) 1.07 1.34
    EOFF(mJ/cm2) 2.05 2.78
    ESW(mJ/cm2) 3.12 4.12
    下载: 导出CSV
  • [1] JIANG Huaping, WEI Jin, DAI Xiaoping, et al. SiC MOSFET with built-in SBD for reduction of reverse recovery charge and switching loss in 10-kV applications[C]. Proceedings of 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 2017: 49–52. doi: 10.23919/ISPSD.2017.7988890.
    [2] SUNG W and BALIGA B J. On developing one-chip integration of 1.2 kV SiC MOSFET and JBS diode (JBSFET)[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8206–8212. doi: 10.1109/TIE.2017.2696515.
    [3] LI Xuan, TONG Xing, HUANG A Q, et al. SiC trench MOSFET with integrated self-assembled three-level protection Schottky barrier diode[J]. IEEE Transactions on Electron Devices, 2018, 65(1): 347–351. doi: 10.1109/TED.2017.2767904.
    [4] LUO Maojiu, CHEN Hang, ZHANG Yourun, et al. Novel design and modelling of SiC junction barrier Schottky diode with improved Baliga FOM under high-temperature applications[J]. Microelectronics Journal, 2024, 151: 106343. doi: 10.1016/j.mejo.2024.106343.
    [5] OHOKA A, UCHIDA M, KIYOSAWA T, et al. Reduction of RonA retaining high threshold voltage in SiC DioMOS by improved channel design[C]. Proceedings of 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, USA, 2018: 52–55. doi: 10.1109/ISPSD.2018.8393600.
    [6] UCHIDA M, HORIKAWA N, TANAKA K, et al. Novel SiC power MOSFET with integrated unipolar internal inverse MOS-channel diode[C]. Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011: 26.6. 1–26.6. 4. doi: 10.1109/IEDM.2011.6131620.
    [7] OHOKA A, HORIKAWA N, KIYOSAWA T, et al. 40mΩ/1700V DioMOS (Diode in SiC MOSFET) for high power switching applications[J]. Materials Science Forum, 2014, 778/780: 911–914. doi: 10.4028/www.scientific.net/MSF.778-780.911.
    [8] NA J and KIM K. A novel 4H-SiC double trench MOSFET with built-in MOS channel diode for improved switching performance[J]. Electronics, 2023, 12(1): 92. doi: 10.3390/electronics12010092.
    [9] WEI Jie, JIANG Qingfeng, LUO Xiaorong, et al. High performance SiC trench-type MOSFET with an integrated MOS-channel diode[J]. Chinese Physics B, 2023, 32(2): 028503. doi: 10.1088/1674-1056/ac7cd5.
    [10] WU Lijuan, YANG Guanglin, YANG Deqiang, et al. Self-clamped P-shield 4H-SiC trench MOSFET for low turn-off loss and suppress switching oscillation[J]. Microelectronics Journal, 2024, 151: 106307. doi: 10.1016/j.mejo.2024.106307.
    [11] CHEN Hang, ZHANG Yourun, ZHOU Rong, et al. A novel low on-state resistance Si/4H-SiC heterojunction VDMOS with electron tunneling layer based on a discussion of the hetero-transfer mechanism[J]. Crystals, 2023, 13(5): 778. doi: 10.3390/cryst13050778.
    [12] JIANG Kaizhe, ZHANG Xiaodong, TIAN Chuan, et al. A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode[J]. Chinese Physics B, 2023, 32(5): 058504. doi: 10.1088/1674-1056/acbd2d.
    [13] FU Hao, WEI Jiaxing, WEI Zhaoxiang, et al. Theory and design of novel power poly-Si/SiC heterojunction tunneling transistor structure[J]. IEEE Transactions on Electron Devices, 2023, 70(11): 6086–6092. doi: 10.1109/TED.2023.3317004.
    [14] WANG Qingyuan, WANG Ying, FEI Xinxing, et al. Performance enhancement of 1.7 kV MOSFET using PIN-junction gate and integrated heterojunction[J]. Microelectronics Reliability, 2024, 152: 115305. doi: 10.1016/j.microrel.2023.115305.
    [15] GAO Sheng, ZHANG Xianfeng, WANG Qi, et al. Asymmetric trench SiC MOSFET with integrated channel accumulation diode for enhanced reverse conduction and switching characteristics[J]. Microelectronics Journal, 2024, 153: 106436. doi: 10.1016/j.mejo.2024.106436.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  47
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-07-28
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回