高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶矩匹配的动态分布自适应电池组故障诊断方法

官思伟 何志伟 董哲康 童宏涛 马沈辉 高明裕

官思伟, 何志伟, 董哲康, 童宏涛, 马沈辉, 高明裕. 高阶矩匹配的动态分布自适应电池组故障诊断方法[J]. 电子与信息学报. doi: 10.11999/JEIT250226
引用本文: 官思伟, 何志伟, 董哲康, 童宏涛, 马沈辉, 高明裕. 高阶矩匹配的动态分布自适应电池组故障诊断方法[J]. 电子与信息学报. doi: 10.11999/JEIT250226
GUAN Siwei, HE Zhiwei, DONG Zhekang, TONG Hongtao, MA Shenhui, GAO Mingyu. Dynamic Distribution Adaptation with Higher-Order Moment Matching for Battery Pack Multi-Fault Diagnosis[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250226
Citation: GUAN Siwei, HE Zhiwei, DONG Zhekang, TONG Hongtao, MA Shenhui, GAO Mingyu. Dynamic Distribution Adaptation with Higher-Order Moment Matching for Battery Pack Multi-Fault Diagnosis[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250226

高阶矩匹配的动态分布自适应电池组故障诊断方法

doi: 10.11999/JEIT250226 cstr: 32379.14.JEIT250226
基金项目: 国家重点研发计划(2023YFB2504100),国家自然科学基金(62171170, 62227802)
详细信息
    作者简介:

    官思伟:博士生,研究方向为锂电池故障诊断、健康状态估计

    何志伟:教授,研究方向为新能源汽车、电池管理系统

    董哲康:副教授,研究方向为电池管理、深度学习

    童宏涛:博士生,研究方向为锂电池故障诊断、残值估计

    马沈辉:博士生,研究方向为锂电池异常检测

    高明裕:教授,研究方向为电池管理系统、能源转换与储能

    通讯作者:

    何志伟 zwhe@hdu.edu.cn

  • 中图分类号: TN911; TP183

Dynamic Distribution Adaptation with Higher-Order Moment Matching for Battery Pack Multi-Fault Diagnosis

Funds: The National Key Research and Development Program of China (2023YFB2504100), The National Natural Science Foundation of China (62171170, 62227802)
  • 摘要: 锂离子电池作为是一种具有高度复杂电化学反应的系统,为了满足电动汽车的功率和能量需求,需要将大量电池串并联组成电池组。然而,电池组的安全问题成为其广泛应用的关键挑战。现有电池组诊断方法在实际应用中存在不足,主要受限于运行条件的多变性和故障样本的稀缺性。此外,电池组电压呈现复杂的非高斯分布,使得基于差异的领域自适应方法仅能表征有限的故障统计特征。针对上述问题,该文提出一种高阶矩匹配的动态分布自适应电动汽车电池组多故障诊断方法,该方法在源域中学习可迁移特征,从而实现目标域中的故障诊断,可诊断的故障类型包括内部短路、电压传感器漂移故障、电压传感器噪声故障和电池不一致故障。所提方法通过动态因子评估边缘和条件分布的相对重要性,动态学习域不变特征。此外,该方法还利用高阶矩匹配对非高斯分布的电池放电特征进行精细化领域对齐。在3种不同的电动汽车标准运行工况下进行的跨域故障诊断实验结果表明,该方法优于现有的基线方法,并实现了平均 95% F1分数的故障诊断性能。
  • 图  1  DDAMD电池故障诊断架构。

    图  2  实验平台

    图  3  3种汽车标准运行工况

    图  4  在FUDS运行工况下的电池包电压曲线

    图  5  所有模型在6个迁移任务的准确率(%)

    图  6  模型在FUDS→US06迁移任务的混淆矩阵

    图  7  所有模型在US06→FUDS迁移任务源域和目标域样本的特征分布

    表  1  电池规格

    参数配置
    尺寸18.6×65.2 mm
    额定电压3.7 V
    额定容量2 000 mAh
    充电截止电压4.2 V
    放电截止电压2.5 V
    重量48 g
    内阻≤60 mΩ
    下载: 导出CSV

    表  2  故障参数具体设置

    类型描述参数
    内短路电池内部短路1/5/10 Ω
    传感器漂移故障传感器受到低频信号干扰1 Hz
    传感器噪声故障电压传感器受噪声干扰0.1 V
    不一致故障在电池组中容量不一致0.2 V
    下载: 导出CSV

    表  3  模型在6个迁移任务上的性能对比结果(%)

    方法 UDDS→FUDS UDDS→US06 FUDS→US06
    精度 召回率 F1分数 精度 召回率 F1分数 精度 召回率 F1分数
    WDCNN 79.00 77.37 77.75 78.92 75.85 74.96 90.28 89.99 89.92
    DANN 76.40 77.09 76.57 78.89 78.28 78.46 90.98 87.70 86.81
    CDAN 73.67 72.44 70.99 77.33 76.66 74.06 86.95 84.61 83.38
    DSAN 87.22 87.38 87.21 84.01 83.13 82.16 95.56 94.93 94.91
    CRDAN 79.47 80.53 79.76 79.42 79.78 79.40 87.13 86.08 85.53
    DDAMD 93.09 92.35 92.25 95.62 95.53 95.51 98.81 98.71 98.72
    方法 UDDS→FUDS UDDS→US06 FUDS→US06
    精度 召回率 F1分数 精度 召回率 F1分数 精度 召回率 F1分数
    WDCNN 79.65 69.68 67.06 68.60 63.60 64.25 93.20 92.31 92.28
    DANN 68.61 68.02 65.36 84.19 77.56 76.43 94.80 94.58 94.57
    CDAN 86.46 80.93 77.17 89.26 87.37 87.39 94.79 94.46 94.47
    DSAN 85.48 75.78 74.73 79.14 60.47 54.43 96.09 96.05 96.04
    CRDAN 87.10 77.56 75.18 79.17 77.84 74.55 90.34 88.17 87.89
    DDAMD 90.43 88.54 87.96 94.74 94.65 94.66 99.89 99.88 99.88
    下载: 导出CSV

    表  4  所有模型的平均诊断时间(s)

    模型WDCNNDANNCDANDSANCRDANDDAMD
    诊断时间0.192 30.187 30.201 60.414 20.203 20.404 3
    下载: 导出CSV
  • [1] XU Yiming, GE Xiaohua, GUO Ruohan, et al. Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2025, 207: 114922. doi: 10.1016/j.rser.2024.114922.
    [2] DONG Zhekang, GU Shenyu, ZHOU Shiqi, et al. Periodic segmentation transformer-based internal short circuit detection method for battery packs[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3655–3666. doi: 10.1109/TTE.2024.3444453.
    [3] YU Quanqing, YANG Yu, TANG Aihua, et al. Unsupervised learning for lithium-ion batteries fault diagnosis and thermal runaway early warning in real-world electric vehicles[J]. Journal of Energy Storage, 2025, 109: 115194. doi: 10.1016/j.est.2024.115194.
    [4] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.

    ZHANG Z haowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
    [5] GUAN Siwei, HE Zhiwei, MA Shenhui, et al. Early life prediction of fast-charging battery based on feature engineering and state space models[J]. Journal of Energy Storage, 2025, 127: 116969. doi: 10.1016/j.est.2025.116969.
    [6] 高明裕, 蔡林辉, 孙长城, 等. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.

    GAO Mingyu, CAI Linhui, SUN Changcheng, et al. An internal short circuit fault detecting of battery pack based on spearman rank correlation combined with neural network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
    [7] HONG Zhongshen, WANG Yujie, and JIN Zhichao. Diagnosis of battery external short circuits based on an improved second-order RC fault model and recursive least squares identification method[J]. Energy, 2025, 319: 134880. doi: 10.1016/j.energy.2025.134880.
    [8] CHENG Zhixiang, MIN Yuanyuan, QIN Peng, et al. A distributed thermal-pressure coupling model of large-format lithium iron phosphate battery thermal runaway[J]. Applied Energy, 2025, 378: 124875. doi: 10.1016/j.apenergy.2024.124875.
    [9] XIONG Rui, SUN Xinjie, MENG Xiangfeng, et al. Advancing fault diagnosis in next-generation smart battery with multidimensional sensors[J]. Applied Energy, 2024, 364: 123202. doi: 10.1016/j.apenergy.2024.123202.
    [10] ZHAO Rui, LIU Jie, and GU Junjie. Simulation and experimental study on lithium ion battery short circuit[J]. Applied Energy, 2016, 173: 29–39. doi: 10.1016/j.apenergy.2016.04.016.
    [11] XIONG Rui, YU Quanqing, SHEN Weixiang, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9709–9718. doi: 10.1109/TPEL.2019.2893622.
    [12] LIU Zhentong and HE Hongwen. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185: 2033–2044. doi: 10.1016/j.apenergy.2015.10.168.
    [13] XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1–10. doi: 10.1016/j.jpowsour.2016.11.007.
    [14] WANG Shunli, TANG Wu, FERNANDEZ C, et al. A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation[J]. Journal of Cleaner Production, 2019, 210: 43–54. doi: 10.1016/j.jclepro.2018.10.349.
    [15] SHANG Yunlong, LU Gaopeng, KANG Yongzhe, et al. A multi-fault diagnosis method based on modified Sample Entropy for lithium-ion battery strings[J]. Journal of Power Sources, 2020, 446: 227275. doi: 10.1016/j.jpowsour.2019.227275.
    [16] ZHANG Zhendong, KONG Xiangdong, ZHENG Yuejiu, et al. Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters[J]. Energy, 2019, 166: 1013–1024. doi: 10.1016/j.energy.2018.10.160.
    [17] WANG Ping, CHEN Jiqing, LAN Fengchong, et al. Multiscale feature fusion approach to early fault diagnosis in EV power battery using operational data[J]. Journal of Energy Storage, 2024, 98: 112812. doi: 10.1016/j.est.2024.112812.
    [18] YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950–959. doi: 10.1016/j.jclepro.2018.03.259.
    [19] ZHAO Yang, LIU Peng, WANG Zhenpo, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354–362. doi: 10.1016/j.apenergy.2017.05.139.
    [20] ZHANG Wei, PENG Gaoliang, LI Chuanhao, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425.
    [21] QIU Xianghui, BAI Yu, and WANG Shuangfeng. A novel unsupervised domain adaptation-based method for lithium-ion batteries state of health prognostic[J]. Journal of Energy Storage, 2024, 75: 109358. doi: 10.1016/j.est.2023.109358.
    [22] GUAN Siwei, HE Zhiwei, MA Shenhui, et al. Domain adaptation with contrastive learning for lithium-ion battery packs fault diagnosis[J]. IEEE Transactions on Transportation Electrification, 2025. doi: 10.1109/TTE.2025.3582411. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
    [23] CAI Linhui, WANG Han, DONG Zhekang, et al. A multi-fault diagnostic method based on category-reinforced domain adaptation network for series-connected battery packs[J]. Journal of Energy Storage, 2023, 60: 106690. doi: 10.1016/j.est.2023.106690.
    [24] ZHAO Zhibin, ZHANG Qiyang, YU Xiaolei, et al. Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525828. doi: 10.1109/TIM.2021.3116309.
    [25] ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi: 10.1109/TNNLS.2020.2988928.
    [26] ZHANG Jing, LI Wanqing, and OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5150–5158. doi: 10.1109/CVPR.2017.547.
    [27] WANG Jindong, CHEN Yiqiang, FENG Wenjie, et al. Transfer learning with dynamic distribution adaptation[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2020, 11(1): 6. doi: 10.1145/3360309.
    [28] XIANG Xiaowei, LIU Yang, FANG Gaoyun, et al. Two-stage alignments framework for unsupervised domain adaptation on time series data[J]. IEEE Signal Processing Letters, 2023, 30: 698–702. doi: 10.1109/LSP.2023.3264621.
    [29] CHEN Chao, FU Zhihang, CHEN Zhihong, et al. HoMM: Higher-order moment matching for unsupervised domain adaptation[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 3422–3429. doi: 10.1609/aaai.v34i04.5745.
    [30] KANG Yongzhe, YANG Xichen, ZHOU Zhongkai, et al. A comparative study of fault diagnostic methods for lithium-ion batteries based on a standardized fault feature comparison method[J]. Journal of Cleaner Production, 2021, 278: 123424. doi: 10.1016/j.jclepro.2020.123424.
    [31] SUN Jinlei, CHEN Siwen, XING Shiyou, et al. A battery internal short circuit fault diagnosis method based on incremental capacity curves[J]. Journal of Power Sources, 2024, 602: 234381. doi: 10.1016/j.jpowsour.2024.234381.
    [32] KANG Yongzhe, DUAN Bin, ZHOU Zhongkai, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132–144. doi: 10.1016/j.jpowsour.2019.01.058.
    [33] LAI Xin, YI Wei, KONG Xiangdong, et al. Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation[J]. Journal of Energy Storage, 2020, 30: 101514. doi: 10.1016/j.est.2020.101514.
    [34] GANIN Y and LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 1180–1189.
    [35] LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-09-12
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回