高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无蜂窝大规模MIMO-NOMA系统的低复杂度频效优化算法

周围 杨瑜 向波 张艺 黄华

周围, 杨瑜, 向波, 张艺, 黄华. 无蜂窝大规模MIMO-NOMA系统的低复杂度频效优化算法[J]. 电子与信息学报. doi: 10.11999/JEIT250189
引用本文: 周围, 杨瑜, 向波, 张艺, 黄华. 无蜂窝大规模MIMO-NOMA系统的低复杂度频效优化算法[J]. 电子与信息学报. doi: 10.11999/JEIT250189
ZHOU Wei, YANG Yu, XIANG Bo, ZHANG Yi, HUANG Hua. Low-Complexity Spectrum-efficiency Optimization Algorithm for Cell-Free Massive MIMO-NOMA Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250189
Citation: ZHOU Wei, YANG Yu, XIANG Bo, ZHANG Yi, HUANG Hua. Low-Complexity Spectrum-efficiency Optimization Algorithm for Cell-Free Massive MIMO-NOMA Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250189

无蜂窝大规模MIMO-NOMA系统的低复杂度频效优化算法

doi: 10.11999/JEIT250189 cstr: 32379.14.JEIT250189
基金项目: 国家自然科学基金(61701062),重庆市基础与前沿研究计划(cstc2019jcyj-msxmX0079)
详细信息
    作者简介:

    周围:男,教授,博士,研究方向为无线移动通信技术、通信系统及信号处理、阵列信号处理等

    杨瑜:女,硕士生,研究方向为通信信号处理理论与方法

    向波:男,硕士生,研究方向为通信信号处理理论与方法

    张艺:女,硕士生,研究方向为无线通信技术与数字信号处理

    黄华:男,硕士生,研究方向为无线通信技术与数字信号处理

    通讯作者:

    杨瑜 s230401051@stu.cqupt.edu.cn

  • 中图分类号: TN929.5

Low-Complexity Spectrum-efficiency Optimization Algorithm for Cell-Free Massive MIMO-NOMA Systems

Funds: The National Natural Science Foundation of China (61701062), Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0079)
  • 摘要: 针对传统无蜂窝大规模多输入多输出(MIMO)非正交多址接入(NOMA)系统频谱效率优化算法复杂度高的问题,该文提出一种低复杂度的用户分簇与功率分配联合优化算法。首先构建下行链路总频谱效率最大化模型,将其分解为用户分簇与功率分配子问题;然后提出基于簇首选择与信道差异最大化的用户分簇算法,通过优化簇首选择降低配对搜索复杂度。基于分簇结果,引入用户最小速率增强约束机制,结合逐次凸逼近(SCA)方法将非凸功率分配问题转化为凸优化形式。通过理论分析与仿真验证,对比了不同用户分簇算法和功率分配方案下系统的频谱效率以及计算复杂度。结果表明:所提分簇算法在不同接入点部署和天线配置下能显著提升系统性能,且复杂度较统计学分簇方法降低47.5%;联合功率分配方案较全功率控制方案在频谱效率与用户公平性方面均展现出显著优势,验证了所提方案的高效性与实用性。
  • 图  1  无蜂窝大规模MIMO-NOMA系统

    图  2  不同用户分簇方案下总频谱效率随用户数量变化曲线

    图  3  不同用户分簇方案下总频谱效率随AP数量变化曲线

    图  4  不同簇内用户数量下总频谱效率随AP数量变化曲线

    图  5  所提分簇算法总频谱效率随迭代次数变化曲线

    图  6  不同天线数下总频谱效率随AP数量变化曲线

    图  7  不同功率分配方案下每用户频谱效率累积分布

    1  基于簇首选择与信道特性的用户分簇算法

     (1)初始化:未分簇用户集合$\mathcal{U}$,分簇结果集合$ G = \varnothing $;
     (2)选择用户构造簇首候选集合$\mathcal{C}$,更新$\mathcal{U} = \mathcal{U}\backslash \mathcal{C}$;
     (3)在$\mathcal{C}$中,按从第N~1个簇首的逆序依次选择簇首用户${u_n}$;
     (4)对簇首用户${u_n}$,计算其与未分簇用户的评价指标$\hat {\boldsymbol{D}}$;
     (5) 按$\hat {\boldsymbol{D}}$降序选取前(K–1)个用户,与${u_n}$组成当前簇${G_n}$;
     (6)将${G_n}$加入$G$,更新$\mathcal{U} = \mathcal{U}\backslash {G_n}$;
     (7)重复步骤(3)~步骤(6),直至$\mathcal{U} = \varnothing $;
     (8)返回:分簇集合$G = \{ {G_1},{G_2}, \cdots ,{G_N}\} $。
    下载: 导出CSV

    表  1  复杂度对比

    方法复杂度
    算法1
    (本文)
    $\mathcal{O}(M \cdot K + N \cdot M \cdot K + N \cdot K{\log _2}K)$68 482
    文献[19]$\mathcal{O}(M \cdot {K^2} + {K^2}{\log _2}K)$130 563
    文献[13]$\mathcal{O}(K \cdot {N^2} \cdot {\log _2}(KN))$46 449
    下载: 导出CSV

    2  基于梯度下降的用户最小频谱效率增强方案

     (1)初始化:功率分配系数$ {{\boldsymbol{\gamma}} ^{(0)}} $,学习率b,最大迭代次数L
     (2)根据初始频谱效率,获得$\min {\text{S}}{{\text{E}}_{nk}}$;
     (3)梯度更新:$ \gamma _{mnk}^{(l + 1)} = \gamma _{mnk}^{(l)} + b \cdot \nabla {\text{S}}{{\text{E}}_{nk}} $;
     (4)更新用户最小频谱效率;
     (5)检查收敛条件:目标函数收敛或达到最大迭代次数,停止迭代;否则返回步骤3;
     (6)输出:所有用户频谱效率,优化后的功率分配系数。
    下载: 导出CSV

    表  2  系统参数

    参数
    接收端噪声方差$ \sigma _n^2 $ $290 \times k \times B \times {\text{NF}}$
    玻尔兹曼常数$k $ $1.381 \times {10^{ - 23}}$ J/K
    带宽B 20 MHz
    接收端噪声系数NF 9 dB
    相干时间${\tau _{\text{c}}}$ 200 ms
    导频长度${\tau _{\text{p}}}$ NOMA(N), OMA(KN)
    学习率b 0.01
    最大迭代次数L 50
    导频发射功率${p_{\text{p}}}$ 0.1 W
    信号发射功率${p_{\text{d}}}$ 0.2 W
    阴影衰落方差${\sigma _{{\text{sh}}}}$ 8 dB
    相关系数${\rho _{nk'}}$ 0.1
    下载: 导出CSV
  • [1] APIYO A and IZYDORCZYK J. A survey of NOMA-aided cell-free massive MIMO systems[J]. Electronics, 2024, 13(1): 231. doi: 10.3390/electronics13010231.
    [2] NGO H Q, INTERDONATO G, LARSSON E G, et al. Ultradense cell-free massive MIMO for 6G: Technical overview and open questions[J]. Proceedings of the IEEE, 2024, 112(7): 805–831. doi: 10.1109/JPROC.2024.3393514.
    [3] JADIDI M, KHOUEINI A M, MOHAMMADI A, et al. Performance analysis and power allocation for uplink cell-free massive MIMO system with nonlinear power amplifier[J]. IEEE Transactions on Communications, 2024, 72(9): 5473–5485. doi: 10.1109/TCOMM.2024.3387854.
    [4] NGUYEN L D, TUAN H D, DUONG T Q, et al. Energy-efficient multi-cell massive MIMO subject to minimum user-rate constraints[J]. IEEE Transactions on Communications, 2021, 69(2): 914–928. doi: 10.1109/TCOMM.2020.3030780.
    [5] ZHANG Ruichen, XIONG Ke, LU Yang, et al. SWIPT-enabled cell-free massive MIMO-NOMA networks: A machine learning-based approach[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 6701–6718. doi: 10.1109/TWC.2023.3327596.
    [6] MOUSAVI S A, MONEMI M, and MOHSENI R. Leveraging common user clustering for improved performance in cell-free NOMA networks[J]. Wireless Networks, 2025, 31(3): 2573–2589. doi: 10.1007/s11276-025-03897-4.
    [7] WANG Jie, LI Jiamin, ZHU Pengcheng, et al. Spatial-separable NOMA-based intelligent hierarchical fast uplink grant for mURLLC over cell-free networks[J]. IEEE Internet of Things Journal, 2024, 11(19): 31974–31987. doi: 10.1109/JIOT.2024.3426048.
    [8] QIN Wen, MENG Yue, and ZHANG Zhi. Cost-aware resource allocation for hybrid multiple access in cell-free MIMO system[J]. IEEE Communications Letters, 2024, 28(4): 852–856. doi: 10.1109/LCOMM.2024.3356585.
    [9] LI Siyi, FANG Xiaojie, DONG Heng, et al. Cell-free massive MIMO-NOMA systems with nonreciprocal channels: Performance analysis and calibration method design[J]. IEEE Systems Journal, 2024, 18(3): 1729–1740. doi: 10.1109/JSYST.2024.3437769.
    [10] LI Yikai and BADUGE G A A. NOMA-aided cell-free massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018, 7(6): 950–953. doi: 10.1109/LWC.2018.2841375.
    [11] REZAEI F, HEIDARPOUR A R, TELLAMBURA C, et al. Underlaid spectrum sharing for cell-free massive MIMO-NOMA[J]. IEEE Communications Letters, 2020, 24(4): 907–911. doi: 10.1109/LCOMM.2020.2966195.
    [12] LE Q N, NGUYEN V D, DOBRE O A, et al. Learning-assisted user clustering in cell-free massive MIMO-NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12872–12887. doi: 10.1109/TVT.2021.3121217.
    [13] DANG X T, LE M T P, NGUYEN H V, et al. Optimal user pairing approach for NOMA-based cell-free massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4751–4765. doi: 10.1109/TVT.2022.3225835.
    [14] ASHIKHMIN A, LI Liangbin, and MARZETTA T L. Interference reduction in multi-cell massive MIMO systems with large-scale fading precoding[J]. IEEE Transactions on Information Theory, 2018, 64(9): 6340–6361. doi: 10.1109/TIT.2018.2853733.
    [15] CHENG H V, BJÖRNSON E, and LARSSON E G. Performance analysis of NOMA in training-based multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 372–385. doi: 10.1109/TWC.2017.2767030.
    [16] LI Xiao, LI Na, LI Xiyue, et al. Joint AP selection and power control optimization for uplink user-centric cell-free massive MIMO[C]. 2024 IEEE 29th Asia Pacific Conference on Communications, BALI, Indonesia, 2024: 530–535. doi: 10.1109/APCC62576.2024.10767902.
    [17] ALI S, TABASSUM H, and HOSSAIN E. Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems[J]. IEEE Access, 2016, 4: 6325–6343. doi: 10.1109/ACCESS.2016.2604821.
    [18] ZHANG Jiayi, FAN Jingyi, AI Bo, et al. NOMA-based cell-free massive MIMO over spatially correlated Rician fading channels[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148861.
    [19] 丁青锋, 李怡浩, 徐梦引. 去蜂窝大规模 MIMO-NOMA 系统能效优化算法[J]. 电子学报, 2023, 51(8): 2020–2029. doi: 10.12263/DZXB.20211351.

    DING Qingfeng, LI Yihao, and XU Mengyin. Energy efficiency optimization algorithm for cell-free massive MIMO-NOMA systems[J]. Acta Electronica Sinica, 2023, 51(8): 2020–2029. doi: 10.12263/DZXB.20211351.
    [20] ZHANG Yao, CAO Haotong, ZHOU Meng, et al. Non-orthogonal multiple access in cell-free massive MIMO networks[J]. China Communications, 2020, 17(8): 81–94. doi: 10.23919/JCC.2020.08.007.
    [21] NGO H Q, ASHIKHMIN A, YANG Hong, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834–1850. doi: 10.1109/TWC.2017.2655515.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  50
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-08-25
  • 网络出版日期:  2025-08-28

目录

    /

    返回文章
    返回