高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

OTFS通信链路构建及其三维星座加密设计

马英杰 刘岳恒 赵耿 赵明晶 王丹

马英杰, 刘岳恒, 赵耿, 赵明晶, 王丹. OTFS通信链路构建及其三维星座加密设计[J]. 电子与信息学报. doi: 10.11999/JEIT250181
引用本文: 马英杰, 刘岳恒, 赵耿, 赵明晶, 王丹. OTFS通信链路构建及其三维星座加密设计[J]. 电子与信息学报. doi: 10.11999/JEIT250181
MA Yingjie, LIU Yueheng, ZHAO Geng, ZHAO Mingjing, WANG Dan. OTFS Communication Link Construction and Three-Dimensional Constellation Encryption Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250181
Citation: MA Yingjie, LIU Yueheng, ZHAO Geng, ZHAO Mingjing, WANG Dan. OTFS Communication Link Construction and Three-Dimensional Constellation Encryption Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250181

OTFS通信链路构建及其三维星座加密设计

doi: 10.11999/JEIT250181 cstr: 32379.14.JEIT250181
基金项目: 国家自然科学基金(62441208),中央高校基本科研业务费资金资助(3282024060, 3282025011)
详细信息
    作者简介:

    马英杰:女,副教授,研究方向为混沌保密通信、混沌密码

    刘岳恒:男,硕士生,研究方向为混沌保密通信

    赵耿:男,教授,研究方向为混沌保密通信、混沌密码

    赵明晶:女,讲师,研究方向为信息安全

    王丹:女,硕士生,研究方向为混沌保密通信

    通讯作者:

    刘岳恒 2397856865@qq.com

  • 中图分类号: TN918.1

OTFS Communication Link Construction and Three-Dimensional Constellation Encryption Design

Funds: The National Natural Science Foundation of China (62441208), The Fundamental Research for the Central Universities (3282024060, 3282025011)
  • 摘要: 为满足第6代移动通信(6G)在高速移动场景下高可靠、安全传输需求,针对正交时频空(OTFS)调制的通信链路,该文设计一种新的三维星座加密方案,充分发挥了OTFS与三维星座的性能优势。首先,设计了一种新型三维星座分布图,16个星座点分布在以原点为中心的球体表面,由球面与坐标轴的6个交点及两个平行于XOY平面的正五边形顶点构成,优化后星座点间最小欧氏距离提升5%,平均功率降低11%,星座图性能指数提升10%,改善了误码率性能。此外,提出了一种三维星座映射与旋转加密方案,通过16位量化混沌序列动态选择映射方式,并结合两次星座点旋转操作,实现了三维星座的高效加密。仿真结果表明,相较于现有方案,所提出的方案在确保通信性能的同时,安全性能有较好提升,误码率性能提升约0.6 dB,且密钥空间达10120,能够有效抵抗暴力破解,加密后图像直方图分布均匀,相关系数趋近于0,具有强抗统计攻击能力,且密钥敏感性和鲁棒性测试进一步验证了其安全性能。
  • 图  1  3D 16-ary星座图

    图  2  加密方案系统模型

    图  3  加密规则

    图  4  加密前后星座图对比

    图  5  加密前误码率对比

    图  6  加密前后误码率对比

    图  7  不同密钥解密结果

    图  8  图像及分布直方图

    图  9  鲁棒性对比

    表  1  3D 16-ary星座图坐标

    X轴坐标Y轴坐标Z轴坐标
    A1100
    A2–100
    A3010
    A40–10
    A5001
    A600–1
    A70.50500.50500.7000
    A80.32420.63630.7000
    A90.70540.11170.7000
    A100.11170.70540.7000
    A110.63630.32420.7000
    A120.50500.50500.7000
    A130.32420.63630.7000
    A140.70540.11170.7000
    A150.11170.70540.7000
    A160.63630.32420.7000
    下载: 导出CSV

    表  2  MED对比

    星座图MED
    2D 16QAM0.6325
    文献[16]0.7654
    文献[17]0.7302
    文献[18]0.6874
    本文方案0.7677
    下载: 导出CSV

    表  3  不同星座性能对比

    星座图平均功率峰值功率CFM
    2D 16QAM9.93018.0000.4028
    文献[16]6.8286.8280.5858
    文献[17]7.50013.5030.5333
    文献[18]8.40012.2200.4762
    本文方案6.7876.7870.5894
    下载: 导出CSV

    表  4  选择映射规则

    Y1Y2Y3Y4A1A2$ \cdots $A16
    00009;0;15;6;3;5;10;14;1;2;11;12;13;8;7;4;
    00012;1;4;11;8;14;7;5;0;9;6;13;12;3;10;15;
    00107;2;13;8;1;11;4;12;3;0;5;14;15;6;9;10;
    00110;3;10;5;6;12;9;11;2;7;8;15;141;4;13;
    010013;4;11;2;7;1;14;10;5;6;15;8;9;12;3;0;
    01016;5;0;15;12;10;3;1;4;13;2;9;8;7;14;11;
    01103;6;9;12;5;15;0;8;7;4;1;10;11;2;13;14;
    01114;7;14;1;2;8;1315;6;3;12;11;10;5;0;9;
    10001;8;7;14;11;13;2;6;9;10;3;4;5;0;15;12;
    100110;9;12;3;0;6;15;13;8;1;14;5;4;11;2;7;
    101015;10;5;0;9;3;12;4;11;8;13;6;7;14;1;2;
    10118;11;2;13;14;4;1;3;10;15;0;7;6;9;12;5;
    11005;12;3;10;15;9;6;2;13;14;7;0;1;4;11;8;
    110114;13;8;7;4;2;11;9;12;5;10;1;0;15;6;3;
    111011;14;1;4;13;7;8;0;15;12;9;2;3;10;5;6;
    111112;15;6;9;10;0;5;7;14;11;4;3;2;13;8;1;
    下载: 导出CSV

    表  5  三维星座旋转加密规则

    Y5Y6Y7/Y8Y9Y10旋转规则
    000不旋转
    001Z轴旋转
    010Y轴旋转
    011分别绕Y轴、Z轴旋转
    100X轴旋转
    101分别绕X轴、Z轴旋转
    110分别绕X轴、Y轴旋转
    111分别绕X轴、Y轴、Z轴旋转
    下载: 导出CSV

    表  6  复杂度对比

    星座调制/解调OTFS调制/解调信号检测算法
    传统2维OTFSO(L)O(MNlogMN)O(M2N2)
    文献[16]O(L+T+Q)O(MNlogMN)O(M3N3)
    文献[18]O(L)O(MNlogMN)O(M3N3)
    本文方案O(L+Q)O(MNlogMN)O(M3N3)
    下载: 导出CSV

    表  7  相关系数对比

    图像名称/编号水平方向垂直方向对角方向
    Cameraman
    (512×512)
    原始图像0.98200.98820.9731
    本文加密0.00250.00090.0388
    文献[16]0.01000.00870.0131
    文献[17]0.01030.00350.0597
    7.1.09
    (512×512)
    原始图像0.86910.92760.8915
    本文加密0.00160.00230.0046
    5.1.09
    (256×256)
    原始图像0.85010.87160.8723
    本文加密0.00230.00830.0097
    5.1.10
    (256×256)
    原始图像0.80670.85520.8950
    本文加密0.01620.00560.0011
    下载: 导出CSV

    表  8  PSNR对比

    图像名称/编号SNR=10SNR=12SNR=14
    Cameraman
    (512×512)
    本文加密23.212429.972739.5546
    文献[16]21.272027.700836.4857
    文献[17]19.037624.421533.0136
    7.1.09
    (512×512)
    本文加密24.620130.641936.5844
    文献[16]22.869328.998435.5868
    文献[17]20.53625.833833.5381
    5.1.09
    (256×256)
    本文加密24.572330.508936.7201
    文献[16]23.165529.243735.8463
    文献[17]20.721925.853033.3320
    5.1.10
    (256×256)
    本文加密24.136529.854935.8519
    文献[16]22.293528.341735.9071
    文献[17]19.961625.311132.1762
    下载: 导出CSV

    表  9  MSE对比

    图像名称/编号SNR=10SNR=12SNR=14
    Cameraman
    (512×512)
    本文加密310.339465.43577.2048
    文献[16]485.1497110.409214.6053
    文献[17]811.5578234.925932.4877
    7.1.09
    (512×512)
    本文加密224.424356.090114.2770
    文献[16]335.852381.891717.9639
    文献[17]574.7482169.707928.7921
    5.1.09
    (256×256)
    本文加密226.908657.835613.8380
    文献[16]313.717777.394016.9219
    文献[17]550.6714168.959930.1913
    5.1.10
    (256×256)
    本文加密250.860257.234816.9002
    文献[16]383.472995.260516.6867
    文献[17]656.0297191.411639.3964
    下载: 导出CSV
  • [1] YLI-KAAKINEN J, LOULOU A, LEVANEN T, et al. Frequency-domain signal processing for spectrally-enhanced CP-OFDM waveforms in 5G new radio[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6867–6883. doi: 10.1109/TWC.2021.3077762.
    [2] SIRIWANITPONG A, SANADA K, HATANO H, et al. Deep learning-based channel estimation with 1D CNN for OFDM systems under high-speed railway environments[J]. IEEE Access, 2025, 13: 13128–13142. doi: 10.1109/ACCESS.2025.3531009.
    [3] WANG Xueyang, SHEN Wenqian, XING Chengwen, et al. Joint Bayesian channel estimation and data detection for OTFS systems in LEO satellite communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4386–4399. doi: 10.1109/TCOMM.2022.3179389.
    [4] LI Bei, XIAO Tian, ZHOU Kai, et al. Research on OTFS Systems for 6G[C]. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Wuhan, China, 2022: 1498–1503. doi: 10.1109/TrustCom56396.2022.00213.
    [5] MIAO Qilong, LIANG Jing, ZHANG Ge, et al. A target parameters estimation method for CP-OTFS-based terrestrial radar system[J]. IEEE Wireless Communications Letters, 2025, 14(1): 233–237. doi: 10.1109/LWC.2024.3497959.
    [6] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [7] SHAFIE A, YUAN Jinhong, FITZPATRICK P, et al. On the coexistence of OTFS modulation with OFDM-based communication systems[J]. IEEE Transactions on Communications, 2024, 72(11): 6822–6838. doi: 10.1109/TCOMM.2024.3412776.
    [8] ALDABABSA M, ÖZYURT S, KURT G K, et al. A survey on orthogonal time frequency space modulation[J]. IEEE Open Journal of the Communications Society, 2024, 5: 4483–4518. doi: 10.1109/OJCOMS.2024.3422801.
    [9] MA Kejia, GAO Zhenzhen, WANG Jinchi, et al. Physical layer security design for FDD IM-OTFS transmissions based on secure mapping[J]. IEEE Access, 2023, 11: 98293–98304. doi: 10.1109/ACCESS.2023.3312580.
    [10] GUO Zhiruo, LIU Bo, REN Jianxin, et al. Doppler delay-time frequency cross-domain joint high security transmission scheme based on orthogonal time frequency space[J]. IEEE Photonics Journal, 2023, 15(5): 7202007. doi: 10.1109/JPHOT.2023.3307548.
    [11] CUI Jie, LIU Bo, REN Jianxin, et al. High-security three-dimensional optical transmission mechanism utilizing time-frequency-space interleaving disruption[J]. Optics Express, 2023, 31(23): 38640–38652. doi: 10.1364/OE.504520.
    [12] 赵耿, 马英杰, 董有恒. 混沌密码理论研究与应用新进展[J]. 信息网络安全, 2024, 24(2): 203–216. doi: 10.3969/j.issn.1671-1122.2024.02.004.

    ZHAO Geng, MA Yingjie, and DONG Youheng. New progress in research and application of chaotic cryptography theory[J]. Netinfo Security, 2024, 24(2): 203–216. doi: 10.3969/j.issn.1671-1122.2024.02.004.
    [13] TAN Yanhua, TAO Yiwei, FANG Yi, et al. Three-dimensional constellation-assisted DCSK system: A new design for high-rate chaotic communication[J]. IEEE Transactions on Communications, 2024, 72(6): 3199–3210. doi: 10.1109/TCOMM.2024.3357611.
    [14] REN Jianxin, XIA Wenchao, LIU Bo, et al. Performance and security improvement of three-dimensional orthogonal chirp division multiplexing system with 2D-IDFnT[J]. Journal of Lightwave Technology, 2024, 42(16): 5544–5551. doi: 10.1109/JLT.2024.3398993.
    [15] CHEN Shuaidong, REN Jianxin, LIU Bo, et al. Performance improvement of non-orthogonal multiple access with a 3D constellation and a 2D IFFT modulator[J]. Optics Express, 2023, 31(5): 7425–7439. doi: 10.1364/OE.483799.
    [16] 吴锐. 基于混沌系统的OFDM安全传输方案研究[D]. [硕士论文], 西安电子科技大学, 2023. doi: 10.27389/d.cnki.gxadu.2023.000510.

    WU Rui. Research on OFDM secure transmission scheme based on chaotic system[D]. [Master dissertation], Xidian University, 2023. doi: 10.27389/d.cnki.gxadu.2023.000510.
    [17] CHEN Gengyin, LIU Bo, REN Jianxin, et al. Three-dimensional non-orthogonal multiple access high-security seven-core transmission system based on constellation chaotic selection mapping[J]. Journal of Lightwave Technology, 2024, 42(17): 5910–5917. doi: 10.1109/JLT.2024.3406722.
    [18] CHEN Yuhua, ZHAO Lei, JIANG Yuan, et al. OTFS waveform based on 3-D signal constellation for time-variant channels[J]. IEEE Communications Letters, 2023, 27(8): 1999–2003. doi: 10.1109/LCOMM.2023.3286413.
    [19] REN Jianxin, LIU Bo, WU Xiangyu, et al. Three-dimensional probabilistically shaped CAP modulation based on constellation design using regular tetrahedron cells[J]. Journal of Lightwave Technology, 2020, 38(7): 1728–1734. doi: 10.1109/JLT.2019.2955728.
    [20] ZHANG Yiqun, JIANG Ning, ZHAO Anke, et al. Security enhancement in coherent OFDM optical transmission with chaotic three-dimensional constellation scrambling[J]. Journal of Lightwave Technology, 2022, 40(12): 3749–3760. doi: 10.1109/JLT.2022.3154091.
    [21] CAI Xiangming, YUEN C, HUANG Chongwen, et al. Toward chaotic secure communications: An RIS enabled M-Ary differential chaos shift keying system with block interleaving[J]. IEEE Transactions on Communications, 2023, 71(6): 3541–3558. doi: 10.1109/TCOMM.2023.3262834.
    [22] BAO Han, WANG Zhuowu, HUA Zhongyun, et al. Initial-offset-control coexisting hyperchaos in two-dimensional discrete neuron model[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4784–4794. doi: 10.1109/TII.2023.3327566.
    [23] KANEKO K. Spatiotemporal intermittency in coupled map lattices[J]. Progress of Theoretical Physics, 1985, 74(5): 1033–1044. doi: 10.1143/PTP.74.1033.
    [24] WEBER A. The USC-SIPI image database[EB/OL]. https://sipi.usc.edu/database/, 1977.
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  62
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-19
  • 修回日期:  2025-07-10
  • 网络出版日期:  2025-07-26

目录

    /

    返回文章
    返回