高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成肖特基二极管的分裂栅碳化硅(SiC)MOSFET器件

马超 陈伟中 张波

马超, 陈伟中, 张波. 集成肖特基二极管的分裂栅碳化硅(SiC)MOSFET器件[J]. 电子与信息学报. doi: 10.11999/JEIT250180
引用本文: 马超, 陈伟中, 张波. 集成肖特基二极管的分裂栅碳化硅(SiC)MOSFET器件[J]. 电子与信息学报. doi: 10.11999/JEIT250180
MA Chao, CHEN Weizhong, ZHANG Bo. A Novel Silicon Carbide (SiC) MOSFET with Diode Integration Technology[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250180
Citation: MA Chao, CHEN Weizhong, ZHANG Bo. A Novel Silicon Carbide (SiC) MOSFET with Diode Integration Technology[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250180

集成肖特基二极管的分裂栅碳化硅(SiC)MOSFET器件

doi: 10.11999/JEIT250180
基金项目: 重庆市自然科学基金面上项目(CSTB2024NSCQ-MSX1069),重庆市创新与应用重大专项(CSTB2023TIAD-STX0014)
详细信息
    作者简介:

    马超:男,博士生,研究方向为半导体物理器件和集成电路

    陈伟中:男,教授,研究方向为半导体功率器件设计及可靠性分析

    张波:男,教授,研究方向为半导体技术

    通讯作者:

    马超 machao@ime.ac.cn

  • 中图分类号: TN47‌‌

A Novel Silicon Carbide (SiC) MOSFET with Diode Integration Technology

Funds: Chongqing Nature Science Foundation of China (CSTB2024NSCQ-MSX1069), Chongqing Innovation and Application of Major Projects (CSTB2023TIAD-STX0014)
  • 摘要: 该文提出一种集成肖特基二极管结构的新型分裂栅碳化硅MOSFET器件,有效改善传统DT-MOS器件的反向恢复与开关特性。该新型结构首先采用元胞内集成肖特基二极管技术替代传统DT-MOS的右侧沟道,其次采用分裂栅极集成技术代替传统槽栅设计,将栅极分成了栅极G和源极S两个部分,中间由二氧化硅进行介质隔离。其作用包括:集成肖特基二极管抑制体二极管导通并消除双极退化效应;集成分裂栅与源极短接,减小栅漏耦合面积来降低反馈电容与栅电荷,且在接入高电位时形成电子积累层以提高电子密度。其结果显示:反向导通状态下,电流将从肖特基二极管流出,连接源极的分裂栅极将提升电子浓度从而提高电流密度;动态开关状态下,分裂栅结构通过屏蔽设计减小了栅极与漏极的耦合面积,有效降低了米勒平台电荷QGD并改善了开关性能。
  • 图  1  横截面结构示意图

    图  2  传统DT-MOS 和提出的SDT-MOS的I-V特性对比

    图  3  新型SDT-ATMOS

    图  4  传统DT-MOS 和提出的SDT-MOS的击穿特性对比,插图为两种器件的电场分布

    图  5  新型SDT-MOS集成的肖特基二极管特性分析

    图  6  NCSL浓度对两种器件的击穿电压与比导通电阻的影响

    图  7  SDT-MOS与DT-MOS器件的电容特性对比

    图  8  SDT-MOS与DT-MOS器件的栅极电荷特性

    图  9  双脉冲测试下DT-MOS与SDT-ATMOS器件的开关特性对比

    图  10  DT-MOS与SDT-ATMOS两种器件的开关损耗对比

    图  11  DT-MOS与SDT-MOS器件的内部二极管反向恢复特性

    表  1  两种器件关键参数

    参数 DT-MOS SDT-MOS
    Cell pitch 3 μm 3 μm
    TDrift 11 μm 11 μm
    Wgate 0.9 μm 0.25 μm
    Tgate 1 μm 1 μm
    Tox 50 nm 20 nm
    NDrift 7×1015 cm–3 7×1015 cm–3
    NP-base 2.5×1017 cm–3 2.5×1017 cm–3
    NCSL 2.5×1016 cm–3 2.5×1016 cm–3
    W 0.3 μm
    Tox2 0.2 μm
    下载: 导出CSV

    表  2  两种器件的关键性能对比

    参数 DT-MOS SDT-MOS
    Vcut-in 2.8 V 1.5 V
    Ron,sp 1.36 mΩ·cm2 1.42 mΩ·cm2
    BV 1 099 V 1 101 V
    QGD 303 nC/cm2 106.5 nC/cm2
    Eon/Eoff 1.96/1.92 mJ/cm2 0.67/0.91 mJ/cm2
    QRR 3.02 μC/cm2 1.39 μC/cm2
    Ron,sp×CGD 107.4 mΩ·pF 41.2 mΩ·pF
    Ron,sp×QGD 412.1 mΩ·nC 151.2 mΩ·nC
    下载: 导出CSV
  • [1] JIN Miaoixn, GAO Qiang, WANG Yijie, et al. A temperature-dependent SiC MOSFET modeling method based on MATLAB/Simulink[J]. IEEE Access, 2018, 6: 4497–4505. doi: 10.1109/ACCESS.2017.2776898.
    [2] ZHANG Jinping, ZHANG Bo, and LI Zhaoji. Asymmetric 3D tri-gate 4H-SiC MESFETs with a recessed drain drift region[J]. Semiconductor Science and Technology, 2009, 24(4): 045001. doi: 10.1088/0268-1242/24/4/045001.
    [3] SHE Xu, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193–8205. doi: 10.1109/TIE.2017.2652401.
    [4] DENG Xiaochuan, XU Xiaojie, LI Xuan, et al. A novel SiC MOSFET embedding low barrier diode with enhanced third quadrant and switching performance[J]. IEEE Electron Device Letters, 2020, 41(10): 1472–1475. doi: 10.1109/LED.2020.3017650.
    [5] AN Junjie and HU Shengdong. Heterojunction diode shielded SiC split-gate trench MOSFET with optimized reverse recovery characteristic and low switching loss[J]. IEEE Access, 2019, 7: 28592–28596. doi: 10.1109/ACCESS.2019.2902246.
    [6] WEI Jin, WANG Yuru, ZHANG Meng, et al. High-speed power MOSFET with low reverse transfer capacitance using a trench/planar gate architecture[C]. Proceedings of 2017 29th International Symposium on Power Semiconductor Devices and IC's, Sapporo, Japan, 2017: 331–334. doi: 10.23919/ISPSD.2017.7988956.
    [7] YUAN Xibo, LAIRD I, and WALDER S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3925–3945. doi: 10.1109/TPEL.2020.3024862.
    [8] LI Helong and MUNK-NIELSEN S. Detail study of SiC MOSFET switching characteristics[C]. Proceedings of 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems, Galway, Ireland, 2014: 1–5. doi: 10.1109/PEDG.2014.6878691.
    [9] ISHIGAKI T, MURATA T, KINOSHITA K, et al. Analysis of degradation phenomena in bipolar degradation screening process for SiC-MOSFETs[C]. Proceedings of 2019 31st International Symposium on Power Semiconductor Devices and ICs, Shanghai, China, 2019: 259–262. doi: 10.1109/ISPSD.2019.8757598.
    [10] PENG Kang, ESKANDARI S, and SANTI E. Characterization and modeling of SiC MOSFET body diode[C]. Proceedings of 2016 IEEE Applied Power Electronics Conference and Exposition, Long Beach, USA, 2016: 2127–2135. doi: 10.1109/APEC.2016.7468161.
    [11] AGARWAL A, FATIMA H, HANEY S, et al. A new degradation mechanism in high-voltage SiC power MOSFETs[J]. IEEE Electron Device Letters, 2007, 28(7): 587–589. doi: 10.1109/LED.2007.897861.
    [12] CHEN Yuzhi, LI Chi, WU Yifan, et al. A physical-based 3rd-quadrant behavioral model for power SiC MOSFET[C]. Proceedings of 2023 IEEE 10th Workshop on Wide Bandgap Power Devices & Applications, Charlotte, USA, 2023: 1–6. doi: 10.1109/wipda58524.2023.10382219.
    [13] DING Jiawei, DENG Xiaochun, LI Songjun, et al. A low-loss diode integrated SiC trench MOSFET for improving switching performance[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6249–6254. doi: 10.1109/TED.2022.3208802.
    [14] YU Yiren, LIU Tao, MA Rongyao, et al. A novel asymmetric trench SiC MOSFET with an integrated JFET for improved reverse conduction performance[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1546–1552. doi: 10.1109/TED.2023.3333285.
    [15] CALLANAN R, RICE J, and PALMOUR J. Third quadrant behavior of SiC MOSFETs[C]. Proceedings of 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, USA, 2013: 1250–1253. doi: 10.1109/apec.2013.6520459.
    [16] SUNG W and BALIGA B J. On developing one-chip integration of 1.2 kV SiC MOSFET and JBS diode (JBSFET)[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8206–8212. doi: 10.1109/TIE.2017.2696515.
    [17] JIANG Huaping, WEI Jin, DAI Xiaoping, et al. SiC MOSFET with built-in SBD for reduction of reverse recovery charge and switching loss in 10-kV applications[C]. Proceedings of 2017 29th International Symposium on Power Semiconductor Devices and IC's, Sapporo, Japan, 2017: 49–52. doi: 10.23919/ISPSD.2017.7988890.
    [18] MANUAL T S D. TCAD sentaurus device manual[J]. USA, 2013. doi: 10.1201/9781003393542-11.
    [19] NAKAMURA T, NAKANO Y, AKETA M, et al. High performance SiC trench devices with ultra-low ron[C]. Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011: 26.5. 1–26.5. 3. doi: 10.1109/IEDM.2011.6131619.
    [20] PETERS D, SIEMIENIEC R, AICHINGER T, et al. Performance and ruggedness of 1200V SiC—Trench—MOSFET[C]. Proceedings of 2017 29th International Symposium on Power Semiconductor Devices and IC's, Sapporo, Japan, 2017: 239–242. doi: 10.23919/ISPSD.2017.7988904.
    [21] KIM D and SUNG W. Improved short-circuit ruggedness for 1.2kV 4H-SiC MOSFET using a deep P-well implemented by channeling implantation[J]. IEEE Electron Device Letters, 2021, 42(12): 1822–1825. doi: 10.1109/LED.2021.3123289.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  44
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-18
  • 修回日期:  2025-03-31
  • 网络出版日期:  2025-04-09

目录

    /

    返回文章
    返回