高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于LPO场景的2 pJ/bit 4×112 Gbps的MZM驱动器

张书安 朱文锐 古元冬 雷萌 张建玲

张书安, 朱文锐, 古元冬, 雷萌, 张建玲. 一种用于LPO场景的2 pJ/bit 4×112 Gbps的MZM驱动器[J]. 电子与信息学报, 2025, 47(8): 2945-2952. doi: 10.11999/JEIT250176
引用本文: 张书安, 朱文锐, 古元冬, 雷萌, 张建玲. 一种用于LPO场景的2 pJ/bit 4×112 Gbps的MZM驱动器[J]. 电子与信息学报, 2025, 47(8): 2945-2952. doi: 10.11999/JEIT250176
ZHANG Shu’an, ZHU Wenrui, GU Yuandong, LEI Meng, ZHANG Jianling. A 2 pJ/bit, 4×112 Gbps PAM4 linear driver for MZM in LPO Application[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2945-2952. doi: 10.11999/JEIT250176
Citation: ZHANG Shu’an, ZHU Wenrui, GU Yuandong, LEI Meng, ZHANG Jianling. A 2 pJ/bit, 4×112 Gbps PAM4 linear driver for MZM in LPO Application[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2945-2952. doi: 10.11999/JEIT250176

一种用于LPO场景的2 pJ/bit 4×112 Gbps的MZM驱动器

doi: 10.11999/JEIT250176 cstr: 32379.14.JEIT250176
详细信息
    作者简介:

    张书安:男,硕士,研究方向为光电通信芯片

    朱文锐:男,博士,研究方向为光电通信芯片

    古元冬:男,教授,研究方向为MEMS传感器、MEMS/CMOS单片集成、超结构光学等

    雷萌:女,硕士,研究方向为光电通信芯片

    张建玲:女,硕士,研究方向为光电通信芯片

    通讯作者:

    张书安 joshuazhang316@outlook.com

  • 中图分类号: TN402

A 2 pJ/bit, 4×112 Gbps PAM4 linear driver for MZM in LPO Application

  • 摘要: 针对 AI 数据中心对光模块高集成度、低功耗的要求,该文提出连续时间线性均衡器(CTLE)与可变增益放大器联合设计的电流复用架构,将传统马赫曾德尔调制器驱动器的四级结构简化为两级;输出级采用集电极开路结构使输出级功耗降低一半。该文还首次提出高低频响应独立可调的 CTLE 架构,通过低频增益补偿有效抑制趋肤效应引起的非线性失真,通过高频增益调节有效补偿传输线的高频损耗。该芯片基于130 nm BiCMOS 工艺流片,芯片具有4个通道,每个通道最大通信速率为112 Gbps。测试结果表明,该驱动器达到最大增益19.49 dB、增益可调节范围 13 dB、最大峰值增益9.2 dB、差分输出摆幅3 Vppd和总谐波失真低于3.5%,眼图线性度达到0.95,芯片功耗低至 225.23 mW,达到2 pJ/bit 的超高能效。实现了线性驱动可插拔光模块等应用场景所需的高性能与低功耗平衡。
  • 图  1  传统光模块与LPO光模块对比[6]

    图  2  常见4级MZM驱动器架构

    图  3  本文设计的MZM驱动器芯片架构和应用场景示意图

    图  4  前级链路的介质损耗和导体损耗示意图

    图  5  本文设计的MZM驱动器具体电路图

    图  6  低频增益调整功能的示意图

    图  7  芯片显微镜照片

    图  8  测试现场照片

    图  9  S参数测试结果

    图  10  THD测试结果

    图  11  眼图测试结果

    表  1  近年发表的驱动器性能比较

    本文 文献[11] 文献[14] 文献[15] 文献[16]
    工艺节点 130 nm BiCMOS 55 nm BiCMOS 28 nm CMOS 90 nm BiCMOS 65 nm CMOS
    Peak (dB) 9.2 10
    低频响应优化 Yes No No No No
    速率 (Gb/s) 112 100 28 112 50
    带宽 (GHz) 47 36.3 42.1 28.5
    数据格式 PAM4 PAM4 PAM4 PAM4 NRZ
    电源 (V) 3.3 2.5 1.2, 2.4 5
    输出摆幅 (Vppd) 3 2 2.4 3.6 4
    功耗 (mW) 225.3 385 88 905 267
    能量效率 (pJ/bit) 2 3.85 3.14 8.05 5.35
    FoM [pJ/(bit·Vppd)] 0.67 1.93 1.31 2.24 1.34
    下载: 导出CSV
  • [1] NOWELL M and ROBERTS E. 400G, 800G, and terabit pluggable optics: What you need to know[EB/OL]. https://www.ciscolive.com/c/dam/r/ciscolive/global-event/docs/2024/pdf/BRKOPT-2699.pdf, 2024.
    [2] TARTAGLIA A, CAVALIERE F, LOSTEDT M, et al. Perspectives for co-packaged optics in radio access networks[C]. 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2023: 1–7. doi: 10.1109/ICTON59386.2023.10207522.
    [3] MINKENBERG C, KRISHNASWAMY R, ZILKIE A, et al. Co-packaged datacenter optics: Opportunities and challenges[J]. IET Optoelectronics, 2021, 15(2): 77–91. doi: 10.1049/ote2.12020.
    [4] Arista: 800G LPO[EB/OL]. https://www.ecocexhibition.com/wp-content/uploads/Arista-Networks-ECOC-2023-LPO_.pdf, 2024.
    [5] BEN-HAMIDA N, GHARAN S O, ABDO A, et al. From analog coherent optics to linear drive pluggable optics: Lessons learnt[C]. Signal Processing in Photonic Communications 2024, Québec City, Canada, 2024. doi: 10.1364/SPPCOM.2024.SpTh1H.3.
    [6] CHOU E S, HUANG Yishen, AMIRALIZADEH S, et al. 100G and 200G per lane linear drive optics for data center applications[C]. 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, USA, 2024: 1–3. doi: 10.1364/OFC.2024.W4H.3.
    [7] SVENSSON C and DERMER G H. Time domain modeling of lossy interconnects[J]. IEEE Transactions on Advanced Packaging, 2001, 24(2): 191–196. doi: 10.1109/6040.928754.
    [8] ZHANG G, LIAO Yu, MA E, et al. 25G long reach cable link system equalization optimization[C]. DesignCon 2016: Where the Chip Meets the Board, Santa Clara, California, USA, 2016.
    [9] KONG Weikun, CHEN Wenbo, ZHONG Cheng, et al. A study on transmission loss of build-up film applied to IC substrate[C]. 2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 2023: 1–5. doi: 10.1109/ICEPT59018.2023.10492264.
    [10] HAO Kai, HE Jian, LI Leliang, et al. A 28GBaud high-swing linear Mach-Zehnder modulators driver for PAM-4 and coherent optical communications[C]. 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications, Nanjing, China, 2020: 94–95. doi: 10.1109/ICTA50426.2020.9332018.
    [11] BREYNE L, RAMON H, VAN GASSE K, et al. 50 GBd PAM4 transmitter with a 55nm SiGe BiCMOS driver and silicon photonic segmented MZM[J]. Optics Express, 2020, 28(16): 23950–23960. doi: 10.1364/OE.397765.
    [12] RAZAVI B. Design of Analog CMOS Integrated Circuits[M]. 2nd ed. New York, US: McGraw-Hill Education, 2017: 126–128.
    [13] RAZAVI B. Design of Integrated Circuits for Optical Communications[M]. 2nd ed. Hoboken, US: Wiley, 2012: 140–143.
    [14] KIM M, KWON D H, RHO D W, et al. A low-power 28-Gb/s PAM-4MZM driver with level pre-distortion[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(3): 908–912. doi: 10.1109/TCSII.2020.3020128.
    [15] FAN Wentian, CHEN Yingmei, CUI Haojie, et al. A 56Gbaud PAM-4 linear driver for Mach-Zehnder Modulators in 90-nm SiGe BICMOS technology[C]. 2022 3rd Asia Symposium on Signal Processing (ASSP), Singapore, Singapore, 2022: 51–55. doi: 10.1109/ASSP57481.2022.00016.
    [16] SHI Jingbo, LIU Han, YANG Tao, et al. An 800G integrated silicon-photonic transmitter based on 16-channel Mach-Zehnder Modulator and co-designed 5.35pJ/bit CMOS drivers[C]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–4. doi: 10.1109/ISCAS46773.2023.10181563.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  147
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-18
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-05-24
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回