高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机平台单天线合成孔径全球导航卫星系统干扰源定位方法

王璐 王轩 吴仁彪

王璐, 王轩, 吴仁彪. 无人机平台单天线合成孔径全球导航卫星系统干扰源定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT250169
引用本文: 王璐, 王轩, 吴仁彪. 无人机平台单天线合成孔径全球导航卫星系统干扰源定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT250169
WANG Lu, WANG Xuan, WU Renbiao. Global Navigation Satellite System Interference Source Localization Algorithm via Single-antenna Synthetic Aperture on the Unmanned Aerial Vehicle Platform[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250169
Citation: WANG Lu, WANG Xuan, WU Renbiao. Global Navigation Satellite System Interference Source Localization Algorithm via Single-antenna Synthetic Aperture on the Unmanned Aerial Vehicle Platform[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250169

无人机平台单天线合成孔径全球导航卫星系统干扰源定位方法

doi: 10.11999/JEIT250169 cstr: 32379.14.JEIT250169
基金项目: 国家自然科学基金(U213320021)
详细信息
    作者简介:

    王璐:女,讲师,研究方向为卫星导航抗干扰、阵列信号处理

    王轩:男,硕士生,研究方向为阵列信号处理

    吴仁彪:男,教授,研究方向为自适应阵列信号处理、民航无线电干扰检测与自适应抑制、高分辨率雷达成像与自动目标识别等

    通讯作者:

    吴仁彪 rbwu@cauc.edu.cn

  • 中图分类号: TN973

Global Navigation Satellite System Interference Source Localization Algorithm via Single-antenna Synthetic Aperture on the Unmanned Aerial Vehicle Platform

Funds: The National Natural Science Foundation of China (U213320021)
  • 摘要: 被动合成孔径(PSA)技术在干扰源定位中具有广泛应用前景。针对低空低速无人机平台下全球导航卫星系统(GNSS)干扰源定位问题,该文提出一种基于无人机平台单天线合成孔径的GNSS干扰源定位方法。首先将不同类型干扰去基带调制,得到统一的信号表示;其次基于斜距精确表示的距离多普勒(RD)算法实现距离搜索与方位聚焦,获取粗定位结果;然后基于该结果构建高分辨率网格并运用后向投影(BP)算法得到代价函数;最后对代价函数进行峰值搜索,得到最终定位结果。仿真实验表明,所提算法能够实现高精度定位且性能稳定。
  • 图  1  被动合成孔径定位的几何场景

    图  2  二维信号重构示意图

    图  3  斜距平面运动情况示意图

    图  4  RD-BP联合定位算法流程图

    图  5  去载频后的窄带干扰频谱

    图  6  距离-多普勒谱

    图  7  窄带干扰定位结果

    图  8  去载频后的宽带LFM干扰频谱

    图  9  宽带LFM干扰预处理后结果

    图  10  宽带LFM干扰定位结果

    图  11  去载频后的欺骗干扰频谱

    图  12  欺骗干扰预处理后结果

    图  13  欺骗干扰定位结果

    图  14  与无人机轨迹距离100 m和1 000 m时RMSE随信噪比变化关系图

    图  15  信噪比为–10 dB和15 dB时RMSE随距离变化关系图

    图  16  信噪比为–10 dB和15 dB时RMSE随合成孔径长度变化关系图

    表  1  算法总计算量

    算法复数乘复数加
    RD$ mn({\log _2}m + 1) $$ 2mn\log _2^{}m $
    ML$ mnJ $$ m(n - 1)J $
    ROE$ mn(\log _2^{}m + 1) $$ 2mn\log _2^{}m $
    Taylor$ mn(\log _2^{}m + 1) $$ 2mn\log _2^{}m $
    RD-BP$ mn(\log _2^{}m + 1 + I) $$ m(n(2\log _2^{}m + I) - I) $
    下载: 导出CSV
  • [1] WU Renbiao, WANG Wenyi, LU Dan, et al. Adaptive Interference Mitigation in GNSS[M]. Singapore: Springer, 2018. doi: 10.1007/978-981-10-5571-3.
    [2] BAR-SHALOM O and WEISS A J. Emitter geolocation using single moving receiver[J]. Signal Processing, 2014, 105: 70–83. doi: 10.1016/j.sigpro.2014.05.006.
    [3] NYANTAKYI I O, WAN Qun, NI Lihua, et al. ACGA: Adaptive Conjugate Gradient Algorithm for non-line-of-sight hybrid TDOA-AOA localization[J]. Measurement, 2024, 224: 113820. doi: 10.1016/j.measurement.2023.113820.
    [4] YANG Yang, ZHENG Jibin, LIU Hongwei, et al. Optimal sensor placement and velocity configuration for TDOA-FDOA localization and tracking of a moving source[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8255–8272. doi: 10.1109/TAES.2024.3430238.
    [5] LIU Yapeng, GAO Hongyuan, DU Yanan, et al. DOA estimation for mixed circular and noncircular coherently distributed sources under impulsive noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6622–6637. doi: 10.1109/TAES.2024.3405450.
    [6] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516. doi: 10.1109/LSP.2004.826501.
    [7] ZHANG Yuan, WU Guizhou, LI Xi, et al. Direct position determination based on passive synthetic aperture for coherent receivers[J]. IEEE Sensors Journal, 2024, 24(11): 17917–17925. doi: 10.1109/JSEN.2024.3386869.
    [8] WU Guizhou, ZHANG Min, and GUO Fucheng. High-resolution direct position determination based on eigenspace using a single moving ULA[J]. Signal, Image and Video Processing, 2019, 13(5): 887–894. doi: 10.1007/s11760-019-01425-4.
    [9] 吴癸周, 张源, 张文俊, 等. 基于互质阵列的运动单站信号直接定位方法[J]. 雷达学报, 2022, 11(4): 692–704. doi: 10.12000/JR22056.

    WU Guizhou, ZHANG Yuan, ZHANG Wenjun, et al. Coprime array based direct position determination of signals with single moving observation[J]. Journal of Radars, 2022, 11(4): 692–704. doi: 10.12000/JR22056.
    [10] TIRER T and WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2): 192–196. doi: 10.1109/LSP.2015.2503921.
    [11] 吴癸周, 郭福成, 张敏. 信号直接定位技术综述[J]. 雷达学报, 2020, 9(6): 998–1013. doi: 10.12000/JR20040.

    WU Guizhou, GUO Fucheng, and ZHANG Min. Direct position determination: An overview[J]. Journal of Radars, 2020, 9(6): 998–1013. doi: 10.12000/JR20040.
    [12] WANG Yuqi, SUN Guangcai, WANG Yong, et al. A high-resolution and high-precision passive positioning system based on synthetic aperture technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230613. doi: 10.1109/TGRS.2022.3186767.
    [13] 王裕旗, 孙光才, 邢孟道, 等. 合成孔径无源定位性能分析与参数设计[J]. 电子与信息学报, 2022, 44(9): 3155–3162. doi: 10.11999/JEIT210524.

    WANG Yuqi, SUN Guangcai, XING Mengdao, et al. Performance analysis and parameter design of synthetic aperture passive positioning[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3155–3162. doi: 10.11999/JEIT210524.
    [14] DONG Wenlong, WANG Yuqi, SUN Guangcai, et al. Passive localization for frequency hopping signal emitter based on synthetic aperture principle[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2023, 4(1): 33–40. doi: 10.1109/JMASS.2022.3218578.
    [15] WANG Yuqi, HAN Liang, ZHANG Xu, et al. A passive signal focusing algorithm based on synthetic aperture technique for multiple radiation source localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5206516. doi: 10.1109/TGRS.2024.3370390.
    [16] ZHANG Liting, HUAN Hao, TAO Ran, et al. Emitter localization algorithm based on passive synthetic aperture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2687–2701. doi: 10.1109/TAES.2021.3137090.
    [17] HE Xinsheng, DENG Ming, CHAI Bingjie, et al. Synthetic aperture passive localization method based on slant range orthogonal expansion[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2023, 4(3): 305–310. doi: 10.1109/JMASS.2023.3286271.
    [18] YANG Junhua, HUAN Hao, and TAO Ran. Multisubaperture backward projection positioning algorithm for radiation sources by single satellite[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 1267–1282. doi: 10.1109/TAES.2024.3453780.
    [19] DEBNATH D, VANEGAS F, SANDINO J, et al. A review of UAV path-planning algorithms and obstacle avoidance methods for remote sensing applications[J]. Remote Sensing, 2024, 16(21): 4019. doi: 10.3390/rs16214019.
    [20] ZHAO Li, XU Hongbo, QU Shaocheng, et al. Joint trajectory and communication design for UAV-assisted symbiotic radio networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8367–8378. doi: 10.1109/TVT.2024.3356587.
    [21] SUN Guangcai, WU Yuan, YANG Jun, et al. Full-aperture focusing of very high resolution spaceborne-squinted sliding spotlight SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3309–3321. doi: 10.1109/TGRS.2017.2669205.
    [22] 王裕旗, 孙光才, 杨军, 等. 基于长合成孔径的辐射源成像定位算法[J]. 雷达学报, 2020, 9(1): 185–194. doi: 10.12000/JR19080.

    WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080.
    [23] WANG Yuqi, SUN Guangcai, XIANG Jixiang, et al. A imaging passive localization method for wideband signal based on SAR[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–4. doi: 10.1109/APSAR46974.2019.9048398.
    [24] LI Ang, HUAN Hao, TAO Ran, et al. Passive synthetic aperture high-precision radiation source location by single satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010105. doi: 10.1109/LGRS.2021.3057902.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  36
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-18
  • 修回日期:  2025-08-07
  • 网络出版日期:  2025-08-11

目录

    /

    返回文章
    返回