高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Kolmogorov-Arnold混合卷积神经网络的调制识别方法

郑庆河 刘方霖 余礼苏 姜蔚蔚 黄崇文 李斌 束锋

郑庆河, 刘方霖, 余礼苏, 姜蔚蔚, 黄崇文, 李斌, 束锋. 基于改进Kolmogorov-Arnold混合卷积神经网络的调制识别方法[J]. 电子与信息学报, 2025, 47(8): 2584-2597. doi: 10.11999/JEIT250161
引用本文: 郑庆河, 刘方霖, 余礼苏, 姜蔚蔚, 黄崇文, 李斌, 束锋. 基于改进Kolmogorov-Arnold混合卷积神经网络的调制识别方法[J]. 电子与信息学报, 2025, 47(8): 2584-2597. doi: 10.11999/JEIT250161
ZHENG Qinghe, LIU Fanglin, YU Lisu, JIANG Weiwei, HUANG Chongwen, LI Bin, SHU Feng. An Improved Modulation Recognition Method Based on Hybrid Kolmogorov-Arnold Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2584-2597. doi: 10.11999/JEIT250161
Citation: ZHENG Qinghe, LIU Fanglin, YU Lisu, JIANG Weiwei, HUANG Chongwen, LI Bin, SHU Feng. An Improved Modulation Recognition Method Based on Hybrid Kolmogorov-Arnold Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2584-2597. doi: 10.11999/JEIT250161

基于改进Kolmogorov-Arnold混合卷积神经网络的调制识别方法

doi: 10.11999/JEIT250161 cstr: 32379.14.JEIT250161
基金项目: 国家重点研发计划(2018YFF01014304),国家自然科学基金(62401070),山东省重点研发计划(2024TSGC0055),山东省自然科学基金(ZR2019ZD01, ZR2023QF125),山东省高等学校青年创新团队计划(2024KJH005)
详细信息
    作者简介:

    郑庆河:男,副教授,研究方向为无线通信、认知无线电、机器学习、调制识别、信道估计

    刘方霖:男,本科生,研究方向为无线通信、认知无线电、深度学习、调制识别

    余礼苏:男,副教授,研究方向为射频光载无线通信、非正交多址接入、无人机通信、人工智能

    姜蔚蔚:男,讲师,研究方向为卫星通信、无线通信、物联网、人工智能

    黄崇文:男,教授,研究方向为6G无线通信、智能协同感知、智能天线

    李斌:男,副教授,研究方向为物理层通信、边缘计算、无人机通信

    束锋:男,教授,研究方向为智能通信、调制识别、深度学习、认知计算

    通讯作者:

    郑庆河 zqh@sdmu.edu.cn

  • 中图分类号: TN929.5

An Improved Modulation Recognition Method Based on Hybrid Kolmogorov-Arnold Convolutional Neural Network

Funds: The National Key R&D Program (2018YFF01014304), The National Natural Science Foundation of China (62401070), Shandong Provincial Key R&D Program (2024TSGC0055), Shandong Provincial Natural Science Foundation (ZR2019ZD01, ZR2023QF125), Shandong Provincial Youth Innovation Team Plan of Higher Education Institutions (2024KJH005)
  • 摘要: 针对苛刻通信场景下调制方式识别精度低且泛化难的问题,该文提出一种改进Kolmogorov-Arnold混合卷积神经网络模型KA-CNN。首先,通过双树复小波包变换将信号分解至多维小波域,结合不同频率分量构建多尺度信号表征,促使神经网络模型学习各频率下的一致性特征;然后设计集成样条函数和非线性激活函数的深度学习结构,利用样条函数解决维度诅咒问题,增强周期性特征的持续学习能力;最后,采用Lipschitz正则化约束的多级网格训练,改善模型面对不同信号参数的适应性,增强跨通信场景的泛化能力。在公开数据集RadioML 2016.10a, RadioML 2018.01a和CSPB.ML.2023的实验表明,KA-CNN具有优异的调制识别精度,当信噪比在16 dB时能够取得90%以上的识别准确率。相较于其它深度学习方法,整体识别精度提升3%~10%,并在各种信噪比条件下具备更强的特征学习能力和泛化性。
  • 图  1  通信系统模型

    图  2  基于KA-CNN的调制识别整体框架

    图  3  信号多尺度时频表征构建过程

    图  4  KA-CNN的非线性变换示意图

    图  5  用于捕获空间、通道和频率信息的多维感知层结构

    图  6  不同信噪比下的调制识别准确率

    图  7  典型信噪比下的调制识别混淆矩阵

    图  8  不同信号表征下的调制识别准确率

    图  9  不同模块组合下的调制识别准确率

    图  10  不同参数下的调制识别准确率

    图  11  不同模型的调制识别性能对比

    表  1  信号模型参数

    参数类型 RadioML 2016.10a RadioML 2018.01a CSPB.ML.2023
    符号率偏移(kHz) 0.1~0.4 0.1~0.4 0.1~0.6
    频率偏移(kHz) 0~0.01 0.0001~0.01 –0.2~0.2
    相位偏移 0~0.01×2π 0.0001~0.01×2π –0.1~0.1×2π
    时钟误差 0~0.02 0~0.02 0~0.25
    采样点数 2×128 1024 2×128
    信噪比(dB) –20:2:18 –20:2:30 2~20
    噪声类型 加性高斯白噪声 加性高斯白噪声 加性高斯白噪声
    信道环境 莱斯+瑞利 莱斯+瑞利 莱斯+瑞利
    调制类型 11种 24种 9种
    样本数量 2.2×106 2.56×107 1.2×106(非重叠)
    下载: 导出CSV

    表  2  训练过程的超参数

    数据集 分解尺度L 迭代周期 批量大小$ \varOmega $ 学习率 惩罚因子$ \lambda $ 网格大小G 样条阶数D 丢弃率$ \rho $
    RadioML 2016.10a 3 80 64 0.001 0.0001 5 3 0.2
    RadioML 2018.01a 4 100 128 0.0001 0.0001 6 4 0.3
    CSPB.ML.2023 3 100 64 0.0001 0.00001 5 3 0.2
    下载: 导出CSV
  • [1] 尤肖虎, 张川, 谈晓思, 等. 基于AI的5G技术——研究方向与范例[J]. 中国科学: 信息科学, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174.

    YOU Xiaohu, ZHANG Chuan, TAN Xiaosi, et al. AI for 5G: Research directions and paradigms[J]. Scientia Sinica: Informationis, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174.
    [2] 杨伟超, 杜宇, 文伟, 等. 基于多重分形谱智能分析的卫星信号调制识别研究[J]. 电子学报, 2022, 50(6): 1336–1343. doi: 10.12263/DZXB.20210882.

    YANG Weichao, DU Yu, WEN Wei, et al. Modulation recognition of satellite communication signal based on intelligent analysis of multi-fractal spectrum[J]. Acta Electronica Sinica, 2022, 50(6): 1336–1343. doi: 10.12263/DZXB.20210882.
    [3] 王华华, 张睿哲, 黄永洪. 基于生成式对抗网络和多模态注意力机制的扩频与常规调制信号识别方法[J]. 电子与信息学报, 2024, 46(4): 1212–1221. doi: 10.11999/JEIT230518.

    WANG Huahua, ZHANG Ruizhe, and HUANG Yonghong. Spread spectrum and conventional modulation signal recognition method based on generative adversarial network and multi-modal attention mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1212–1221. doi: 10.11999/JEIT230518.
    [4] 张天骐, 汪锐, 安泽亮, 等. 基于多任务学习的MIMO-OFDM信噪比估计与调制识别[J]. 北京邮电大学学报, 2022, 45(6): 95–100,121. doi: 10.13190/j.jbupt.2022-050.

    ZHANG Tianqi, WANG Rui, AN Zeliang, et al. MIMO-OFDM signal to noise ratio estimation and modulation recognition based on multi task learning[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 95–100,121. doi: 10.13190/j.jbupt.2022-050.
    [5] WANG Danyang, QI Peihan, FU Qifan, et al. Multiple high-order cumulants-based spectrum sensing in full-duplex-enabled cognitive IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(11): 9330–9343. doi: 10.1109/JIOT.2021.3055782.
    [6] BAI Jiansheng, YAO Jinjie, GUO Yurong, et al. Automatic modulation classification in impulsive noise: Log-domain 3-D constellation diagrams and multiscale dual-convolutional 3DCNN[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(4): 1204–1217. doi: 10.1109/TCCN.2024.3375510.
    [7] LI Lin, ZHU Yaxin, and ZHU Zhigang. Automatic modulation classification using ResNext-GRU with deep feature fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2519710. doi: 10.1109/TIM.2023.3290301.
    [8] 李东瑾, 杨瑞娟, 李晓柏, 等. 基于核协同表示与鉴别投影的辐射源调制识别[J]. 电子学报, 2020, 48(9): 1695–1702. doi: 10.3969/j.issn.0372-2112.2020.09.005.

    LI Dongjin, YANG Ruijuan, LI Xiaobai, et al. Emitter signal modulation recognition based on kernel collaborative representation and discriminative projection[J]. Acta Electronica Sinica, 2020, 48(9): 1695–1702. doi: 10.3969/j.issn.0372-2112.2020.09.005.
    [9] YANG Faquan, YANG Ling, WANG Dong, et al. Method of modulation recognition based on combination algorithm of K-means clustering and grading training SVM[J]. China Communications, 2018, 15(12): 55–63. doi: 10.12676/j.cc.2018.12.004.
    [10] 占锦敏, 赵知劲, 王李军. 基于随机森林的通信信号识别算法[J]. 杭州电子科技大学学报: 自然科学版, 2020, 40(5): 1–6. doi: 10.13954/j.cnki.hdu.2020.05.001.

    ZHAN Jinmin, ZHAO Zhijin, and WANG Lijun. Signals identification algorithm based on random forest[J]. Journal of Hangzhou Dianzi University: Natural Sciences, 2020, 40(5): 1–6. doi: 10.13954/j.cnki.hdu.2020.05.001.
    [11] 左晓亚, 张俊杰, 姚如贵, 等. 残差膨胀卷积结构下的多模态特征调制方式识别[J]. 信号处理, 2023, 39(11): 2013–2021. doi: 10.16798/j.issn.1003-0530.2023.11.010.

    ZUO Xiaoya, ZHANG Junjie, YAO Rugui, et al. Automatic modulation classification based on residual dilated-convolution and multi-feature[J]. Journal of Signal Processing, 2023, 39(11): 2013–2021. doi: 10.16798/j.issn.1003-0530.2023.11.010.
    [12] KE Ziqi and VIKALO H. Real-time radio technology and modulation classification via an LSTM auto-encoder[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 370–382. doi: 10.1109/TWC.2021.3095855.
    [13] GHASEMZADEH P, HEMPEL M, WANG Honggang, et al. GGCNN: An efficiency-maximizing gated graph convolutional neural network architecture for automatic modulation identification[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6033–6047. doi: 10.1109/TWC.2023.3239311.
    [14] ZHENG Qinghe, ZHAO Penghui, WANG Hongjun, et al. Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation[J]. IEEE Communications Letters, 2022, 26(6): 1298–1302. doi: 10.1109/LCOMM.2022.3145647.
    [15] ZHANG Zufan, LUO Hao, WANG Chun, et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13521–13531. doi: 10.1109/TVT.2020.3030018.
    [16] QI Peihan, ZHOU Xiaoyu, ZHENG Shilian, et al. Automatic modulation classification based on deep residual networks with multimodal information[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 21–33. doi: 10.1109/TCCN.2020.3023145.
    [17] 肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43(8): 2300–2307. doi: 10.11999/JEIT200506.

    XIAO Yihan, WANG Liang, and GUO Yuxia. Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2300–2307. doi: 10.11999/JEIT200506.
    [18] O’SHEA T J, CORGAN J, and CLANCY T C. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016: 213–226. doi: 10.1007/978-3-319-44188-7_16.
    [19] O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
    [20] SNOAP J A, POPESCU D C, and SPOONER C M. Novel nonlinear neural-network layers for high performance and generalization in modulation-recognition applications[C]. MILCOM 2023-2023 IEEE Military Communications Conference, Boston, USA, 2023: 562–567. doi: 10.1109/MILCOM58377.2023.10356331.
    [21] ZHENG Qinghe, TIAN Xinyu, YU Zhiguo, et al. DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106082. doi: 10.1016/j.engappai.2023.106082.
    [22] ZHENG Qinghe, SAPONARA S, TIAN Xinyu, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659–671. doi: 10.1007/s11571-023-10015-7.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  241
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-04-10
  • 网络出版日期:  2025-04-28
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回