高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向语义重要性和鲁棒性的RIS增强语义通信系统

张祖凡 尹星然 周建萍 柳玥

张祖凡, 尹星然, 周建萍, 柳玥. 面向语义重要性和鲁棒性的RIS增强语义通信系统[J]. 电子与信息学报, 2025, 47(8): 2608-2620. doi: 10.11999/JEIT250159
引用本文: 张祖凡, 尹星然, 周建萍, 柳玥. 面向语义重要性和鲁棒性的RIS增强语义通信系统[J]. 电子与信息学报, 2025, 47(8): 2608-2620. doi: 10.11999/JEIT250159
ZHANG Zufan, YIN Xingran, ZHOU Jianping, LIU Yue. RIS-Enhanced Semantic Communication Systems Oriented towards Semantic Importance and Robustness[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2608-2620. doi: 10.11999/JEIT250159
Citation: ZHANG Zufan, YIN Xingran, ZHOU Jianping, LIU Yue. RIS-Enhanced Semantic Communication Systems Oriented towards Semantic Importance and Robustness[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2608-2620. doi: 10.11999/JEIT250159

面向语义重要性和鲁棒性的RIS增强语义通信系统

doi: 10.11999/JEIT250159 cstr: 32379.14.JEIT250159
基金项目: 重庆市自然科学基金项目(CSTB2025NSCQ-LZX0051)
详细信息
    作者简介:

    张祖凡:男,教授,研究方向为无线通信、移动社交网络、机器学习等

    尹星然:男,硕士生,研究方向为语义通信、智能反射表面等

    周建萍:女,博士生,研究方向为语义通信、智能反射表面等

    通讯作者:

    尹星然 1308145068@qq.com

  • 中图分类号: TN915.0

RIS-Enhanced Semantic Communication Systems Oriented towards Semantic Importance and Robustness

Funds: The Natural Science Foundation of Chongqing, China (CSTB2025NSCQ-LZX0051)
  • 摘要: 为了在语义通信中高效传递语义信息,需要减少语义级损失并进一步降低物理噪声对语义特征的影响。对此,该文提出了一种面向语义重要性和鲁棒性并联合智能反射面(RIS)进行跨层设计的语义通信系统。在语义层,基于语义特征重要性和鲁棒性更新背景知识库并生成用于评估数据流传输优先级的特征优先级,发送端再根据特征优先级将数据流分割为高优先级数据流和低优先级数据流。在物理层,通过交替优化主动预编码波束成形矢量和RIS被动相移对抗信道衰落,然后由RIS辅助传输高优先级数据流,由衰落信道传输低优先级数据流,并在接收端依据特征优先级列表恢复原始文本。仿真结果表明,相较于基准方案,所提方案不仅有着更好的鲁棒性而且提高了双语评价替补(BLEU)分数和语义相似度,同时对不同长度的句子具有良好的适配性。
  • 图  1  SISR-RIS系统架构

    图  2  语义特征提取流程

    图  3  不同信噪比和算法下的BLEU分数比较

    图  4  在不同信噪比下长短句的BERT-SS评分

    图  5  示例短句特征优先级分数

    图  6  示例长句特征优先级分数

    1  语义特征提取算法

     1: 输入:背景知识库K,文本数据集$ s $,衰落信道系数$ {h_d} $,高斯噪声$ n $,已完成预训练的神经网络$ E_\beta ^{\rm C}\left( \cdot \right),E_\alpha ^{\rm S}\left( \cdot \right),D_\delta ^{\rm C}\left( \cdot \right),D_\chi ^{\rm S}\left( \cdot \right) $
     2: 加载预训练模型BERT
     3: while未遍历完所有文本时,do
     4:  利用BERT模型得到$ s $中第$ l $个句子的第$ i $个单词的向量表示$ {{\boldsymbol{B}}_\psi }({s_{l,i}}) $
     5:  经语义编码器$ E_\alpha ^{\rm S}\left( \cdot \right) $后$ s $被映射为高维特征向量$ {s^ * } $
     6:  语义重要性计算:
     7:   通过式(8)和式(9)计算$ {{\boldsymbol{B}}_\psi }({s_{l,i}}) $的平均语义关联度$ \varPsi ( \cdot ) $
     8:   通过式(10)基于语义损失计算语义重要性,得到语义重要性分数列表$ {\boldsymbol{I}} $
     9:   处理$ s $中的特殊标记和停用词,将其在$ {\boldsymbol{I}} $中对应的重要性分数置为0
     10:   检测分词器可能生成的子词,重新整合$ {\boldsymbol{I}} $
     11: 语义鲁棒性计算:
     12:   随机产生扰动噪声$ \delta $
     13:   加入扰动噪声$ \delta $对高维特征向量$ {{\boldsymbol{s}}^ * } $进行干扰
     14:   通过式(12)和式(13)计算扰动特征向量通过SC系统后的损失增量
     15:   通过式(14)基于损失增量进行语义鲁棒性计算,语义鲁棒性分数列表$ {\boldsymbol{r}} $
     16: end while
     17: 基于$ {\boldsymbol{I}} $和$ {\boldsymbol{r}} $加权计算特征优先级列表$ {\boldsymbol{\sigma}} $,并对K进行更新
     18: 输出:包含特征优先级列表$ {\boldsymbol{\sigma}} $的背景知识库K
    下载: 导出CSV

    2  SISR-RIS系统端到端训练步骤

     1: 输入:背景知识库K,文本数据集$ s $,衰落信道系数$ {h_{\mathrm{d}}},{{\boldsymbol H}_{\rm{dr}}},{{\boldsymbol{H}}_{\rm T}},{{\boldsymbol{H}}_{\rm R}} $,高斯噪声$ n $,已完成预训练的神经网络$ E_\beta ^{\rm C}\left( \cdot \right),E_\alpha ^{\rm S}\left( \cdot \right),D_\delta ^{\rm C}\left( \cdot \right) $,
     $D_\chi ^{\rm S}\left( \cdot \right) $
     2: 初始化参数集
     3: while停止条件不满足时,do
     4:  利用交替优化算法解决$ {{\mathrm{P}}_1} $,得到优化后的RIS反射相移系数矩阵
     5:  发送机:
     6:   从K中取出一批次$ s $
     7:   $ E_\alpha ^{\rm S}(s) \to {\boldsymbol{m}} $,$ E_\beta ^{\rm C}({\boldsymbol{m}}) \to {\boldsymbol{x}} $
     8:   依据K中的$ {\boldsymbol{\sigma}} $进行切割$ {{\boldsymbol x}_{\rm L}},{{\boldsymbol x}_{\rm H}} = {F_{\rm T}}({\boldsymbol{x}};{\boldsymbol{\sigma}} ) $
     9:   通过无RIS辅助衰落信道和RIS辅助衰落信道分别对$ {{\boldsymbol x}_{\rm L}} $和$ {{\boldsymbol x}_{\rm H}} $进行传输
     10: RIS:根据得到的RIS反射相移系数矩阵对输入信号$ {{\boldsymbol x}_{\rm H}} $进行反射
     11: 接收机:
     12:   依据K中的$ {\boldsymbol{\sigma}} $对$ {{\boldsymbol y}_{\rm H}} $和$ {{\boldsymbol y}_{\rm L}} $进行恢复,得到$ {\boldsymbol{y}} = {F_{\rm R}}({{\boldsymbol y}_{\rm H}},{{\boldsymbol y}_{\rm L}};{\boldsymbol{\sigma}} ) $
     13:   $ D_\delta ^{\rm C}\left( {\boldsymbol{y}} \right) \to \hat {\boldsymbol{m}} $,$ D_\chi ^{\rm S}\left( {\hat {\boldsymbol{m}}} \right) \to \hat s $
     14:   通过式(18)计算损失$ {\varGamma _{{\mathrm{CE}}}}(s,\hat s;\beta ,\alpha ,\chi ,\delta ) $,并用Adam优化器训练$ \beta ,\alpha ,\chi ,\delta $
     15: end while
     16: 输出:已完成训练的神经网络$ E_\beta ^{\rm C}( \cdot ),E_\alpha ^{\rm S}( \cdot ),D_\delta ^{\rm C}( \cdot ),D_\chi ^{\rm S}( \cdot ) $
    下载: 导出CSV

    表  1  语义层网络参数设置表

    各部分名称 具体层名 维度 相关细节
    语义编码器 嵌入层 22234×128 22234为字典大小
    语义编码器 Transformer编码器×3 128(8个头) Linear激活
    信道编码器 全连接层 128×256 ReLU激活
    信道编码器 全连接层 256×16 ReLU激活
    信道 RIS或瑞利信道
    信道解码器 全连接层 16×256 ReLU激活
    信道解码器 全连接层 256×128 ReLU激活
    语义解码器 Transformer解码器×3 128(8个头) Linear激活
    语义解码器 预测层 22234 Softmax激活
    下载: 导出CSV

    表  2  验证集中示例短句比较

    示例句子the vote will be taken at noon on thursday
    Proposed-SISR-RISthis vote will be taken at noon on thursday
    Deep-SC-Rayleighthe vote will be taken at noon on tuesday
    RLJSCC-Rayleighthe vote will be taken at afternoon on thursday
    下载: 导出CSV

    表  3  验证集中示例长句比较

    示例句子this report is significant for small airports and their income could be dramatically reduced as a result
    Proposed-SISR-RISthis report is significant for small airports and their income could be dramatically reduced as a result
    Deep-SC-Rayleighthis report is considerable for small businesses and their income could be treated reduced as a result
    RLJSCC-Rayleighthis report is significant for small airports and their income could be significantly reduced as a result
    下载: 导出CSV
  • [1] FARSHBAFAN M K, SAAD W, and DEBBAH M. Curriculum learning for goal-oriented semantic communications with a common language[J]. IEEE Transactions on Communications, 2023, 71(3): 1430–1446. doi: 10.1109/TCOMM.2023.3236671.
    [2] SHI Guangming, XIAO Yong, LI Yingyu, et al. From semantic communication to semantic-aware networking: Model, architecture, and open problems[J]. IEEE Communications Magazine, 2021, 59(8): 44–50. doi: 10.1109/MCOM.001.2001239.
    [3] XIE Huiqiang, QIN Zhijin, LI G Y, et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 2663–2675. doi: 10.1109/TSP.2021.3071210.
    [4] XIE Huiqiang and QIN Zhijin. A lite distributed semantic communication system for Internet of Things[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 142–153. doi: 10.1109/JSAC.2020.3036968.
    [5] WANG Sixian, DAI Jincheng, LIANG Zijian, et al. Wireless deep video semantic transmission[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 214–229. doi: 10.1109/JSAC.2022.3221977.
    [6] TONG Wanjie, LIU Fangfang, SUN Zhengfen, et al. Image semantic communications: An extended rate-distortion theory based scheme[C]. Proceedings of 2022 IEEE Globecom Workshops, Rio de Janeiro, Brazil, 2022: 1723–1728. doi: 10.1109/GCWkshps56602.2022.10008733.
    [7] HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997.
    [8] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609.
    [9] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737.
    [10] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [11] DU Hongyang, WANG Jiacheng, NIYATO D, et al. Semantic communications for wireless sensing: RIS-aided encoding and self-supervised decoding[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2547–2562. doi: 10.1109/JSAC.2023.3288231.
    [12] JIANG Peiwen, WEN Chaokai, JIN Shi, et al. RIS-enhanced semantic communications adaptive to user requirements[J]. IEEE Transactions on Communications, 2024, 72(7): 4134–4148. doi: 10.1109/TCOMM.2024.3369697.
    [13] MA Junyu, LI Qiang, LIU Ronghua, et al. Enhanced semantic information transfer on RIS-assisted communication systems[J]. IEEE Wireless Communications Letters, 2024, 13(8): 2225–2229. doi: 10.1109/LWC.2024.3408420.
    [14] 郭帅帅, 李树静. 基于语义重要度的不等错误保护数据传输机制[J]. 中兴通讯技术, 2023, 29(2): 62–66. doi: 10.12142/ZTETJ.202302012.

    GUO Shuaishuai and LI Shujing. Semantic importance-aware data transmission with unequal error protection[J]. ZTE Technology Journal, 2023, 29(2): 62–66. doi: 10.12142/ZTETJ.202302012.
    [15] GUO Shuaishuai, WANG Yanhu, LI Shujing, et al. Semantic importance-aware communications using pre-trained language models[J]. IEEE Communications Letters, 2023, 27(9): 2328–2332. doi: 10.1109/LCOMM.2023.3293805.
    [16] LIU Chuanhong, GUO Caili, YANG Yang, et al. OFDM-based digital semantic communication with importance awareness[J]. IEEE Transactions on Communications, 2024, 72(10): 6301–6315. doi: 10.1109/TCOMM.2024.3397862.
    [17] GUO Shuaishuai, WANG Yanhu, YE Jia, et al. Semantic importance-aware communications with semantic correction using large language models[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2025, 3: 232–245. doi: 10.1109/TMLCN.2025.3530875.
    [18] HU Qiyu, ZHANG Guangyi, QIN Zhijin, et al. Robust semantic communications with masked VQ-VAE enabled codebook[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8707–8722. doi: 10.1109/TWC.2023.3265201.
    [19] CHU Hongyun, PAN Xue, JIANG Jing, et al. Adaptive and robust channel estimation for IRS-aided millimeter-wave communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9411–9423. doi: 10.1109/TVT.2024.3385776.
    [20] GUO Shuaishuai, WANG Yanhu, and ZHANG Peng. Signal Shaping for Semantic Communication Systems with A Few Message Candidates[C]. Proceedings of 2022 IEEE 96th Vehicular Technology Conference, London, United Kingdom, 2022: 1–5. doi: 10.1109/VTC2022-Fall57202.2022.10012981.
    [21] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, 2019: 4171–4186.
    [22] ZHOU Kequan, ZHANG Guangyi, CAI Yunlong, et al. FAST: Feature arrangement for semantic transmission[C]. Proceedings of 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570995.
    [23] KOEHN P. Europarl: A parallel corpus for statistical machine translation[C]. Proceedings of Machine Translation Summit X: Papers, Phuket, Thailand, 2005: 79–86.
    [24] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [25] HUFFMAN D. A method for the construction of minimum-redundancy codes[J]. Proceedings of the IRE, 1952, 40(9): 1098–1101. doi: 10.1109/JRPROC.1952.273898.
    [26] BERROU C, GLAVIEUX A, and THITIMAJSHIMA P. Near shannon limit error-correcting coding and decoding: Turbo-codes. 1[C]. Proceedings of ICC’93 - IEEE International Conference on Communications, Geneva, Switzerland, 1993: 1064–1070. doi: 10.1109/ICC.1993.397441.
    [27] LU Kun, LI Rongpeng, CHEN Xianfu, et al. Reinforcement learning-powered semantic communication via semantic similarity[EB/OL]. http://arxiv.org/abs/2108.12121, 2021.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  63
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-15
  • 修回日期:  2025-07-17
  • 网络出版日期:  2025-07-29
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回