高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式的KBB索引树多关键词模糊排序搜索方案

孙瑾 宋娜娜 王璐 康梦娜 叶克鑫

孙瑾, 宋娜娜, 王璐, 康梦娜, 叶克鑫. 分布式的KBB索引树多关键词模糊排序搜索方案[J]. 电子与信息学报. doi: 10.11999/JEIT250151
引用本文: 孙瑾, 宋娜娜, 王璐, 康梦娜, 叶克鑫. 分布式的KBB索引树多关键词模糊排序搜索方案[J]. 电子与信息学报. doi: 10.11999/JEIT250151
SUN Jin, SONG Nana, WANG Lu, KANG Mengna, YE Kexin. A Distributed KBB Index Tree Multi-Keyword Fuzzy Sorting Search Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250151
Citation: SUN Jin, SONG Nana, WANG Lu, KANG Mengna, YE Kexin. A Distributed KBB Index Tree Multi-Keyword Fuzzy Sorting Search Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250151

分布式的KBB索引树多关键词模糊排序搜索方案

doi: 10.11999/JEIT250151 cstr: 32379.14.JEIT250151
基金项目: 陕西省自然科学基金 (2021JM-341)
详细信息
    作者简介:

    孙瑾:女,博士,副教授,研究方向为密码理论与网络安全、区块链技术

    宋娜娜:女,硕士,研究方向为密码理论与网络安全

    王璐:女,硕士,研究方向为密码理论与网络安全

    康梦娜:女,硕士,研究方向为密码理论与网络安全

    叶克鑫:男,硕士,研究方向为密码理论与网络安全

    通讯作者:

    孙瑾 oksunjin@xaut.edu.cn

  • 中图分类号: TN918.1

A Distributed KBB Index Tree Multi-Keyword Fuzzy Sorting Search Scheme

Funds: The Natural Science Foundation of Shaanxi Province of China (2021JM-341)
  • 摘要: 随着数字化医疗的快速发展,电子健康记录(EHR)已成为提升医疗服务质量的重要手段,医疗机构想要获取患者的EHR用于医疗研究。然而,传统的电子健康记录系统面临信息孤岛、数据安全共享困难、隐私泄露等问题。该文设计了分布式的KBB索引树多关键词模糊排序搜索方案,旨在解决以上问题,并实现安全、高效、可追溯的电子健康记录共享。该方案使用K-means聚类技术对EHR分类,在IPFS上分类存储加密的EHR,实现密文的分布式存储。使用波特词干提取法把关键词转换为统一形式,基于聚类的EHR构造KBB索引树,达到模糊搜索并提高搜索效率。此外,可以通过智能合约实现对用户身份的验证。搜索节点在KBB树中排序搜索,星际文件系统(IPFS)返回前k个加密EHR给用户,用户在区块链上验证数据的完整性后解密。性能分析表明该方案的算法具有安全性,在已知密文模型中是语义安全的,同时具有良好的实现效率。
  • 图  1  基于KBB索引树的搜索

    图  2  系统模型图

    图  3  加密索引生成时间

    图  7  解密时间

    图  8  密钥存储成本

    图  9  密文存储成本

    图  4  陷门生成时间

    图  5  搜索时间

    图  6  密文生成时间

    1  文档处理

     Input: $ D = ({d_1},{d_2}, \cdots ,{d_n}) $
     Output: $ B = ({b_1},{b_2}, \cdots ,{b_K}) $
     1: Randomly select $K$documents $ ({d_1},{d_2}, \cdots ,{d_K}) $ from the
     document collection $ D $ as the initial clustering centers
     2: for $ i = 1,i \le K + 1 $ do
     for $j = K + 1,j \le n$ do
     3: Calculate the Euclidean distance from document $ {d_i} $ to the
     clustering center $ {d_j} $
     4:$ {\text{dist(}}{d_i},{d_j}{\text{)}} = \sqrt {\displaystyle\sum\nolimits_{i = 1}^n {{{({x_i} - {y_i})}^2}} } $
     5: Based on the $ {\text{sim}} $value, document $ {d_i} $ is grouped into clusters
     with the least distance
     6: end for
     7: Calculate the mean of all documents in the cluster to get the
     new center of mass $ K' $
     8:if $ K = K' $then
     9: Output the set of $K$ clustered documents
     $ B = ({b_1},{b_2}, \cdots ,{b_K}) $
     10: else
     11: Repeat steps 2-6
     12:end
    下载: 导出CSV

    2  参数匹配

     Input:Index parameter $ \tilde I $, Trapdoor parameter $ {\text{TK}} $, constant
     $ {\omega _x} $
     Output:$ F' $
     1:function calculateIndexPandTrapdoorP $ ({I_x},{I_1},{I_2},{T_x},T') $
     2: numerator=$ e\left(\prod\nolimits_{x \in S} {I_x^{{\omega _x}},T'} \right) \cdot e({I_2},T') $
     3: denominator=$e({I_1},{T_x})$
     4: return $ {F}^{\prime }=\frac{e\left({\displaystyle \prod _{x\in S}{I}_{x}^{{\omega }_{x}},{T}^{\prime }}\right)\cdot e({I}_{2},{T}^{\prime })}{e({I}_{1},{T}_{x})} $
     5:end if
    下载: 导出CSV
    合约1 验证合约
     1: contract VerifyContract {
     2: uint256 public $F'$;
     3: function receiveAlgorithmResult(uint256
      resultFromAlgorithm1) public {
       $F'$= resultFromAlgorithm1;}
     4: function verifyAccess ( ) public view returns (bool) {
     5: if ($ F' = e{(g,g)^{\alpha rs{u_e}}} $) {
     6: return true;}
     7: else {
     8: return false;}
    下载: 导出CSV
    合约2 搜索合约
     1: contract SearchContract {
     2: event AlgorithmExecuted(uint256 input, uint256 result);
     3: function AlgorithmGDFS(${\tilde T_i},{\tilde Q_e},{Z_i},k$) internal pure {
     4: return $ {\text{Top}} - {\text{kCIDList}} $; }
     5: function executeAlgorithm(uint256 input) external returns
      (uint256){
     6: uint256 result = AlgorithmGDFS(input);
     7: emit AlgorithmExecuted(input, result);
     8: return result;}}
    下载: 导出CSV

    表  1  功能比较

    方案 多关键词排序搜索 细粒度访问控制 查询隐私 搜索结果可验证 IPFS存储 区块链
    文献[3] × × ×
    文献[7] × × × ×
    文献[8] × ×
    文献[9] × × ×
    文献[11] × × × ×
    文献[12] × × × ×
    文献[13] × × ×
    文献[15] × × × ×
    本文方案
    下载: 导出CSV

    表  2  计算成本比较

    方案索引生成陷门生成搜索加密解密
    文献[7]$ O({m^2}n) $$ O({m^2}) $$ O(\mu {m^2}\lg n) $--
    文献[8]$ O(m{n^2}) $$ O(n'{m^2}) $$ O(\mu n'{m^2}\lg n) $$ 4E + (n + 2){E_T} $$ 4P + (n + 2){E_T} $
    文献[11]---$ 5E + (n + 1){E_T} $$ 3P + nE + n{E_T} $
    文献[15]$ O(mn) $$ O(m) $$ O(\mu {m^2}\lg n) $--
    本文方案$ O(mn) $$ O(n'{m^2}) $$ O(\mu n'm\lg n) $$ 2E + (n + 2){E_T} $$ 2P + (n + 3){E_T} $
    下载: 导出CSV

    表  3  存储成本比较

    方案密钥密文
    文献[8]$ (2 + 3l)|G| $$ |{Z_p}| + 3|G| + (n + 2)|{G_T}| $
    文献[11]$ (n' + l + 2)|{Z_p}| + (n' + 2l + 3)|G| + |{G_T}| $$ |{Z_p}| + 6|G| + n|{G_T}| $
    本文方案$ (l + 2 + 4n')|{Z_p}| + 2|G| $$ |{Z_p}| + 2|G| + (n + 2)|{G_T}| $
    下载: 导出CSV
  • [1] SINGH N, KUMAR J, SINGH A K, et al. Privacy-preserving multi-keyword hybrid search over encrypted data in cloud[J]. Journal of Ambient Intelligence and Humanized Computing, 2024, 15(1): 261–274. doi: 10.1007/s12652-022-03889-8.
    [2] CAO Ning, WANG Cong, LI Ming, et al. Privacy-preserving multi-keyword ranked search over encrypted cloud data[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 222–233. doi: 10.1109/TPDS.2013.45.
    [3] LI Jinguo, WEN Mi, LU Kejie, et al. PIMRS: Achieving privacy and integrity-preserving multi-owner ranked-keyword search over encrypted cloud data[J]. Security and Communication Networks, 2016, 9(16): 3765–3776. doi: 10.1002/sec.1482.
    [4] WU Zigang, WANG Haijiang, WAN Jian, et al. An inner product predicate-based medical data-sharing and privacy protection system[J]. IEEE Access, 2024, 12: 68680–68696. doi: 10.1109/ACCESS.2024.3400611.
    [5] TONG Qiuyun, MIAO Yinbin, CHEN Lei, et al. VFIRM: Verifiable fine-grained encrypted image retrieval in multi-owner multi-user settings[J]. IEEE Transactions on Services Computing, 2022, 15(6): 3606–3619. doi: 10.1109/TSC.2021.3083512.
    [6] ZHONG Hong, LI Zhanfei, CUI Jie, et al. Efficient dynamic multi-keyword fuzzy search over encrypted cloud data[J]. Journal of Network and Computer Applications, 2020, 149: 102469. doi: 10.1016/j.jnca.2019.102469.
    [7] XIA Zhihua, WANG Xinhui, SUN Xingming, et al. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(2): 340–352. doi: 10.1109/TPDS.2015.2401003.
    [8] GUO Jiaqi, TIAN Cong, LU Xu, et al. Multi-keyword ranked search with access control for multiple data owners in the cloud[J]. Journal of Information Security and Applications, 2024, 82: 103742. doi: 10.1016/j.jisa.2024.103742.
    [9] GAO Sheng, CHEN Yuqi, ZHU Jianming, et al. BPMS: Blockchain-based privacy-preserving multi-keyword search in multi-owner setting[J]. IEEE Transactions on Cloud Computing, 2023, 11(3): 2260–2272. doi: 10.1109/TCC.2022.3196712.
    [10] CHEN Kai, LIN Zhongrui, WAN Jian, et al. Multi-owner secure encrypted search using searching adversarial networks[C]. Proceedings of the 18th International Conference on Cryptology and Network Security, Fuzhou, China, 2019: 184–195. doi: 10.1007/978-3-030-31578-8_10.
    [11] MIAO Yinbin, LIU Ximeng, CHOO K K R, et al. Privacy-preserving attribute-based keyword search in shared multi-owner setting[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(3): 1080–1094. doi: 10.1109/TDSC.2019.2897675.
    [12] YIN Hui, QIN Zheng, ZHANG Jixin, et al. Secure conjunctive multi-keyword ranked search over encrypted cloud data for multiple data owners[J]. Future Generation Computer Systems, 2019, 100: 689–700. doi: 10.1016/j.future.2019.05.001.
    [13] CHEN Lanxiang, LEE W K, CHANG C C, et al. Blockchain based searchable encryption for electronic health record sharing[J]. Future Generation Computer Systems, 2019, 95: 420–429. doi: 10.1016/j.future.2019.01.018.
    [14] WITTEN I H, MOFFAT A, and BELL T C. Managing Gigabytes: Compressing and Indexing Documents and Images[M]. 2nd ed. San Francisco: Morgan Kaufmann, 1999: 576.
    [15] XU Dequan, PENG Changgen, WANG Weizheng, et al. Privacy-preserving dynamic multi-keyword ranked search scheme in multi-user settings[J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 890–901. doi: 10.1109/TCE.2023.3269045.
    [16] LI Yang and ZHANG Haiyu. Big data technology for teaching quality monitoring and improvement in higher education-joint K-means clustering algorithm and Apriori algorithm[J]. Systems and Soft Computing, 2024, 6: 200125. doi: 10.1016/j.sasc.2024.200125.
    [17] ZUBAIR M, IQBAL A, SHIL A, et al. An improved K-means clustering algorithm towards an efficient data-driven modeling[J]. Annals of Data Science, 2024, 11(5): 1525–1544. doi: 10.1007/s40745-022-00428-2.
    [18] MANASRAH A M, NASIR M A, and SALEM M. A privacy-preserving multi-keyword search approach in cloud computing[J]. Soft Computing, 2020, 24(8): 5609–5631. doi: 10.1007/s00500-019-04033-z.
    [19] ZOU Yipeng, PENG Tao, WANG Guojun, et al. Blockchain-assisted multi-keyword fuzzy search encryption for secure data sharing[J]. Journal of Systems Architecture, 2023, 144: 102984. doi: 10.1016/j.sysarc.2023.102984.
    [20] ABIDIN Z and JUNAIDI A. Text stemming and lemmatization of regional languages in Indonesia: A systematic literature review[J]. Journal of Information Systems Engineering and Business Intelligence, 2024, 10(2): 217–231. doi: 10.20473/jisebi.10.2.217-231.
    [21] ZHAO Fanyi, ZHANG Mingxuan, ZHOU Shiji, et al. Detection of network security traffic anomalies based on machine learning KNN method[J]. Journal of Artificial Intelligence General Science JAIGS, 2024, 1(1): 209–218. doi: 10.60087/jaigs.v1i1.213.
    [22] SAIF M B, MIGLIORINI S, and SPOTO F. A survey on data availability in layer 2 blockchain rollups: Open challenges and future improvements[J]. Future Internet, 2024, 16(9): 315. doi: 10.3390/fi16090315.
    [23] XIA Zhihua, WANG Xinhui, SUN Xingming, et al. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(2): 340–352. doi: 10.1109/TPDS.2015.2401003. (查阅网上资料,本条文献与第7条文献重复,请确认).
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  42
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-11
  • 修回日期:  2025-08-18
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回