高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可移动天线赋能ISAC系统中波束赋形与天线位置联合优化

李振东 巴建乐 苏洲 赵伟淳 陈文 朱政宇

李振东, 巴建乐, 苏洲, 赵伟淳, 陈文, 朱政宇. 可移动天线赋能ISAC系统中波束赋形与天线位置联合优化[J]. 电子与信息学报. doi: 10.11999/JEIT250146
引用本文: 李振东, 巴建乐, 苏洲, 赵伟淳, 陈文, 朱政宇. 可移动天线赋能ISAC系统中波束赋形与天线位置联合优化[J]. 电子与信息学报. doi: 10.11999/JEIT250146
LI Zhendong, BA Jianle, SU Zhou, ZHAO Weichun, CHEN Wen, ZHU Zhengyu. Joint Beamforming and Antenna Position Optimization in Movable Antenna Empowered ISAC Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250146
Citation: LI Zhendong, BA Jianle, SU Zhou, ZHAO Weichun, CHEN Wen, ZHU Zhengyu. Joint Beamforming and Antenna Position Optimization in Movable Antenna Empowered ISAC Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250146

可移动天线赋能ISAC系统中波束赋形与天线位置联合优化

doi: 10.11999/JEIT250146 cstr: 32379.14.JEIT250146
基金项目: 国家自然科学基金(62401448,U24A20237),博士后创新人才支持计划(BX20240277),上海市科委基础研究课题(22JC1404000),上海市科委6G专项(24DP1500500),河南省高校科技创新人才支持计划(23HASTIT019),河南省自然科学基金(232300421097)
详细信息
    作者简介:

    李振东:男,助理教授,研究方向为通感一体化、智能超表面、可移动天线和空天地一体化网络

    巴建乐:女,硕士研究生,研究方向为通感一体化和可移动天线

    苏洲:男,教授,研究方向为网络信息安全、网络安全、隐私保护和人工智能安全

    赵伟淳:男,研究方向为通感一体化和智能超表面

    陈文:男,教授,研究方向为智能超表面、智能通信和绿色多址接入

    朱政宇:男,副教授,研究方向为物联网、智能反射面辅助通信和毫米波通信

    通讯作者:

    苏洲 zhousu@ieee.org

  • 中图分类号: TN915.0

Joint Beamforming and Antenna Position Optimization in Movable Antenna Empowered ISAC Systems

Funds: The National Natural Science Foundation of China (62401448, U24A20237), China National Postdoctoral Program for Innovation Talents (BX20240277), Shanghai Municipal Science and Technology Commission (22JC1404000, 24DP1500500), Science and Technology Innovation Talents in Universities of Henan Province (23HASTIT019), The Natural Science Foundation of Henan Province (232300421097)
  • 摘要: 该文聚焦于通信感知一体化(ISAC)系统性能优化问题,提出一种可移动天线(MA)赋能的创新解决方案。针对传统固定天线阵列因空间自由度受限导致的波束调控能力不足,该研究通过动态调整发射端MA元素的位置来充分利用无线信道空间特性。在满足用户通信与雷达感知需求的约束条件下,建立了包含MA元素离散位置、波束赋形向量和感知信号协方差矩阵的联合优化模型,以最小化系统发射功率。为解决优化变量耦合度高且包含二元离散变量的难题,该文采用离散二进制粒子群优化(BPSO)算法框架进行求解。具体地,首先,通过适应度函数迭代地确定MA元素的离散位置,并运用半正定松弛(SDR)和逐次凸近似(SCA)技术处理非凸约束,进一步求解波束赋形向量和感知协方差矩阵。仿真结果表明,相较于传统固定天线阵列基准方案,所提方案在降低ISAC系统发射功率方面具有显著优势。该文为MA赋能ISAC系统的能耗优化提供了新的思路,对下一代无线通信系统的通信感知融合网络设计具有重要指导意义。
  • 图  1  MA赋能的ISAC系统模型

    图  2  发射功率随感知信干噪比变化曲线

    图  3  发射功率随通信信干噪比变化曲线

    图  4  通信用户数目不同时发射功率随通信信干噪比变化曲线

    图  5  波束方向图

    1  MA天线定位和波束赋形联合优化算法

     (1)初始化:$ {\boldsymbol{r}} $,${\boldsymbol{B}}$,$\left\{ {{{\boldsymbol{w}}_d}} \right\}_{d = 1}^D$,${{\boldsymbol{W}}_0}$;
     (2)设置最大迭代次数$J$;
     (3)重复;
     (4)更新$j = j + 1$;
     (5)给定$\left\{ {{\boldsymbol{w}}_d^{\left( {j - 1} \right)}} \right\}_{d = 1}^D$和${\boldsymbol{W}}_0^{\left( {j - 1} \right)}$,计算适应度函数的值以获得局部最优的$\tilde {\boldsymbol{b}}_i^*$和当前的全局最优的${\tilde {\boldsymbol{b}}^*}$。然后求解式(11)-式(13),并得到并
     存储中间解${\boldsymbol{B}}_{}^{(j)}$;
     (6)给定${\boldsymbol{B}}_{}^{(j)}$,求解问题(P7),并存储中间解$\left\{ {{\boldsymbol{w}}_d^{\left( j \right)}} \right\}_{d = 1}^D$和${\boldsymbol{W}}_0^{\left( j \right)}$;
     (7)直到收敛或达到最大迭代次数;
     (8)根据全局最优的${\tilde {\boldsymbol{b}}^*}$,获得对应的解$ {{\boldsymbol{r}}^ * } $,${{\boldsymbol{B}}^ * }$,$\left\{ {{\boldsymbol{w}}_d^ * } \right\}_{d = 1}^D$,${\boldsymbol{W}}_0^*$;
     (9)根据式(17),计算接收波束赋形向量$ {{\boldsymbol{r}}^ * } $。
    下载: 导出CSV
  • [1] 中国通信学会. 通感算一体化网络前沿报告(2021年)[R]. 2022: 1–74. (查阅网上资料, 未找到对应英文翻译和报告编号信息, 请确认).
    [2] IMT-2030 (6G)推进组. 通信感知一体化技术研究报告[R]. 2021: 1–61. (查阅网上资料, 未找到对应英文翻译和报告编号信息, 请确认).
    [3] MENG Kaitao, MASOUROS C, PETROPULU A P, et al. Cooperative ISAC networks: Performance analysis, scaling laws, and optimization[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 877–892. doi: 10.1109/TWC.2024.3491356.
    [4] JIANG Chengjun, ZHANG Chensi, HUANG Chongwen, et al. RIS-assisted ISAC systems for robust secure transmission with imperfect sense estimation[J]. IEEE Transactions on Wireless Communications, 2025, 24(5): 3979–3992. doi: 10.1109/TWC.2025.3534439.
    [5] MENG Chunwei, WEI Zhiqing, MA Dingyou, et al. Multiobjective-optimization-based transmit beamforming for multitarget and multiuser MIMO-ISAC systems[J]. IEEE Internet of Things Journal, 2024, 11(18): 29260–29274. doi: 10.1109/JIOT.2024.3413687.
    [6] GAO Zhen, WAN Ziwei, ZHENG Dezhi, et al. Integrated sensing and communication with mmWave massive MIMO: A compressed sampling perspective[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1745–1762. doi: 10.1109/TWC.2022.3206614.
    [7] ZHAO Xin, LIU Heng, GONG Shiqi, et al. Dual-functional MIMO beamforming optimization for RIS-aided integrated sensing and communication[J]. IEEE Transactions on Communications, 2024, 72(9): 5411–5427. doi: 10.1109/TCOMM.2024.3384932.
    [8] ZHANG Jiexin, XU Shu, ZHANG Zhengming, et al. A denoising diffusion probabilistic model-based digital twinning of ISAC MIMO channel[J]. IEEE Internet of Things Journal, 2025, 12(15): 29121–29134. doi: 10.1109/JIOT.2024.3495212.
    [9] 李斌, 杨冬东. 同时透射反射可重构智能表面赋能移动边缘计算任务卸载研究[J]. 电子与信息学报, 2025, 47(2): 418–426. doi: 10.11999/JEIT240733.

    LI Bin and YANG Dongdong. Task offloading for simultaneously transmitting and reflecting reconfigurable intelligent surface-assisted mobile edge computing[J]. Journal of Electronics & Information Technology, 2025, 47(2): 418–426. doi: 10.11999/JEIT240733.
    [10] HUA Haocheng, HAN Tonyxiao, and XU Jie. MIMO integrated sensing and communication: CRB-rate tradeoff[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2839–2854. doi: 10.1109/TWC.2023.3303326.
    [11] WANG Peng, HAN Dongsheng, CAO Yashuai, et al. Multi-objective optimization-based waveform design for multi-user and multi-target MIMO-ISAC systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 15339–15352. doi: 10.1109/TWC.2024.3428705.
    [12] SHI Xiaoming, SHAO Xiaodan, and ZHANG Rui. Capacity maximization for base station with hybrid fixed and movable antennas[J]. IEEE Wireless Communications Letters, 2024, 13(10): 2877–2881. doi: 10.1109/LWC.2024.3451481.
    [13] FENG Biqian, WU Yongpeng, XIA Xianggen, et al. Weighted sum-rate maximization for movable antenna-enhanced wireless networks[J]. IEEE Wireless Communications Letters, 2024, 13(6): 1770–1774. doi: 10.1109/LWC.2024.3390428.
    [14] WEI Xin, MEI Weidong, WANG Dong, et al. Joint beamforming and antenna position optimization for movable antenna-assisted spectrum sharing[J]. IEEE Wireless Communications Letters, 2024, 13(9): 2502–2506. doi: 10.1109/LWC.2024.3421636.
    [15] GAO Ying, WU Qingqing, and CHEN Wen. Joint transmitter and receiver design for movable antenna enhanced multicast communications[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18186–18200. doi: 10.1109/TWC.2024.3463390.
    [16] ZHU Lipeng, MA Wenyan, and ZHANG Rui. Movable antennas for wireless communication: Opportunities and challenges[J]. IEEE Communications Magazine, 2024, 62(6): 114–120. doi: 10.1109/MCOM.001.2300212.
    [17] WANG Chao, LI Zan, WONG K K, et al. AI-empowered fluid antenna systems: Opportunities, challenges, and future directions[J]. IEEE Wireless Communications, 2024, 31(5): 34–41. doi: 10.1109/MWC.017.2300527.
    [18] XIU Yue, YANG Songjie, LYU Wanting, et al. Movable antenna enabled ISAC beamforming design for low-altitude airborne vehicles[J]. IEEE Wireless Communications Letters, 2025, 14(5): 1311–1315. doi: 10.1109/LWC.2025.3538587.
    [19] QIN Haoran, CHEN Wen, WU Qingqing, et al. Cramér-Rao bound minimization for movable antenna-assisted multiuser integrated sensing and communications[J]. IEEE Wireless Communications Letters, 2024, 13(12): 3404–3408. doi: 10.1109/LWC.2024.3468709.
    [20] DING Jingze, ZHOU Zijian, LI Wenyao, et al. Movable antenna-enabled co-frequency co-time full-duplex wireless communication[J]. IEEE Communications Letters, 2024, 28(10): 2412–2416. doi: 10.1109/LCOMM.2024.3453296.
    [21] CHEN Li, WANG Zhiqin, DU Ying, et al. Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1795–1808. doi: 10.1109/JSAC.2022.3155515.
    [22] TSINOS C G, ARORA A, CHATZINOTAS S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378–1392. doi: 10.1109/JSTSP.2021.3112295.
    [23] ZHANG Ruoyu, CHENG Lei, ZHANG Wei, et al. Channel estimation for movable-antenna MIMO systems via tensor decomposition[J]. IEEE Wireless Communications Letters, 2024, 13(11): 3089–3093. doi: 10.1109/LWC.2024.3450592.
    [24] SHEKHAR S, SUBHASH A, SRINIVASAN M, et al. Joint power-control and antenna selection in user-centric cell-free systems with mixed resolution ADC[J]. IEEE Transactions on Communications, 2022, 70(12): 8400–8415. doi: 10. 1109/TCOMM. 2022. 3218835. doi: 10.1109/TCOMM.2022.3218835.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  74
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回