高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合空间域维纳滤波与卷积神经网络的水声DOA估计

邢传玺 黄廷龙 谈光枝 李维强

邢传玺, 黄廷龙, 谈光枝, 李维强. 融合空间域维纳滤波与卷积神经网络的水声DOA估计[J]. 电子与信息学报. doi: 10.11999/JEIT250141
引用本文: 邢传玺, 黄廷龙, 谈光枝, 李维强. 融合空间域维纳滤波与卷积神经网络的水声DOA估计[J]. 电子与信息学报. doi: 10.11999/JEIT250141
XING Chuanxi, HUANG Tinglong, TAN Guangzhi, LI Weiqiang. Acoustic DOA Estimation in Underwater Environments by Integrating Spatial Domain Wiener Filtering and Convolutional Neural Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250141
Citation: XING Chuanxi, HUANG Tinglong, TAN Guangzhi, LI Weiqiang. Acoustic DOA Estimation in Underwater Environments by Integrating Spatial Domain Wiener Filtering and Convolutional Neural Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250141

融合空间域维纳滤波与卷积神经网络的水声DOA估计

doi: 10.11999/JEIT250141 cstr: 32379.14.JEIT250141
基金项目: 国家自然科学基金(61761048),云南省基础研究专项面上项目(20210AT070132)
详细信息
    作者简介:

    邢传玺:男,教授,研究方向为信号理论与信号处理、信息获取与处理,水下信息感知与处理

    黄廷龙:男,硕士生,研究方向为水下目标定位

    谈光枝:男,硕士生,研究方向为水声阵列信号处理

    李维强:男,硕士生,研究方向为水下目标定位

    通讯作者:

    黄廷龙 huangtinglong_ymu@163.com

  • 中图分类号: TN911.7

Acoustic DOA Estimation in Underwater Environments by Integrating Spatial Domain Wiener Filtering and Convolutional Neural Networks

Funds: The National Natural Science Foundation of China(61761048), The Yunnan Provincial Basic Research Project (20210AT070132)
  • 摘要: 针对实际海域中来自水流、船舶、海洋生物等噪声源的干扰使得接收信号的信噪比较低,进而导致传统波达方向(DOA)估计算法性能下降的问题。该文提出一种结合维纳滤波降噪的深度学习算法。首先,维纳滤波算法在频域需要依靠噪声和信号功率谱,然而这些参数往往难以获取,因此将其转化为对信号空间域进行降噪,并使用降噪后的数据集进行神经网络训练,从而减小低信噪比条件下对方位角估计的影响。其次,为了实现网络的分类和回归估计功能,使用改进的二进制交叉熵函数作为网络的损失函数。最后,在模型训练完成后,通过小数标签策略预测网络输出结果中的离格误差,并对这些误差进行修正以提高算法估计精度。仿真结果与海试数据验证结果表明,在低信噪比情况下,以均方根误差为性能指标,网络整体性能提升了25.20%,在–20 dB信噪比条件下,所提方法的均方根误差相较MUSIC和ESPRIT算法分别降低了93.42%和92.14%。研究结果表明,本文算法能够充分提取空间特征,满足实际应用对算法鲁棒性的需求,为浅海复杂环境的目标检测和定位任务提供了新的方案。
  • 图  1  小数标签表示图

    图  2  CNN与W-CNN_OG训练模型示意图

    图  3  各算法在SNR=–5 dB条件下的估计误差分布图

    图  4  各算法在SNR=5 dB条件下的估计误差分布图

    图  5  维纳滤波效果对比

    图  6  RMSE随信噪比的变化

    图  7  RMSE随快拍数的变化

    图  8  不同角度间隔算法性能对比

    图  9  海试数据估计结果

    表  1  3组实测数据中各算法估计的RMSE(°)

    算法名称 (–36.1°, –23.8°) (–35.9°, –21.1°) (–33.9°, –25.8°) (–35.5°, –23.8°) (–40.5°, –20.1°)
    MUSIC 2.10 1.32 1.85 1.69 0.92
    CNN 0.65 0.47 0.54 0.76 0.24
    CV_CNN 0.36 0.30 0.36 0.38 0.28
    W-CNN_OG 0.28 0.25 0.29 0.26 0.21
    下载: 导出CSV
  • [1] XU Zhezhen, LI Hui, and YANG Kunde. A modified differential beamforming and its application for DOA estimation of low frequency underwater signal[J]. IEEE Sensors Journal, 2020, 20(16): 8890–8902. doi: 10.1109/JSEN.2020.2988025.
    [2] 张旭, 朱晓春, 徐付佳, 等. 模型误差条件下声矢量圆阵多重信号分类测向改进算法[J]. 声学学报, 2024, 49(3): 533–549. doi: 10.12395/0371-0025.2023058.

    ZHANG Xu, ZHU Xiaochun, XU Fujia, et al. An improved multiple signal classification method for a circular acoustic vector sensor array in the presence of model errors[J]. Acta Acustica, 2024, 49(3): 533–549. doi: 10.12395/0371-0025.2023058.
    [3] 王旭东, 仲倩, 闫贺, 等. 一种二维信号波达方向估计的改进多重信号分类算法[J]. 电子与信息学报, 2019, 41(9): 2137–2142. doi: 10.11999/JEIT181090.

    WANG Xudong, ZHONG Qian, YAN He, et al. An improved MUSIC algorithm for two dimensional direction of arrival estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2137–2142. doi: 10.11999/JEIT181090.
    [4] NING Yuming, MA Shuang, MENG Fanyi, et al. DOA estimation based on ESPRIT algorithm method for frequency scanning LWA[J]. IEEE Communications Letters, 2020, 24(7): 1441–1445. doi: 10.1109/LCOMM.2020.2988020.
    [5] BARAT M, KARIMI M, and MASNADI-SHIRAZI M A. High-order maximum likelihood methods for direction of arrival estimation[J]. IEEE Open Journal of Signal Processing, 2021, 2: 359–369. doi: 10.1109/OJSP.2021.3093866.
    [6] 刘素娟, 崔程凯, 郑丽丽, 等. 基于压缩感知的贪婪类重构算法原子识别策略综述[J]. 电子与信息学报, 2023, 45(1): 361–370. doi: 10.11999/JEIT211297.

    LIU Sujuan, CUI Chengkai, ZHENG Lili, et al. A review of atom recognition strategies for greedy class reconstruction algorithms based on compressed sensing[J]. Journal of Electronics & Information Technology, 2023, 45(1): 361–370. doi: 10.11999/JEIT211297.
    [7] AGHABABAIYAN K, SHAH-MANSOURI V, and MAHAM B. High-precision OMP-based direction of arrival estimation scheme for hybrid non-uniform array[J]. IEEE Communications Letters, 2020, 24(2): 354–357. doi: 10.1109/LCOMM.2019.2952595.
    [8] 赵洋, 石屹然, 石要武. 基于噪声子空间矢量的OMP离格DOA估计[J]. 光学 精密工程, 2020, 28(10): 2384–2391. doi: 10.37188/OPE.20202810.2384.

    ZHAO Yang, SHI Yiran, and SHI Yaowu. DOA estimation based on OMP modified by noise subspace vectors[J]. Optics and Precision Engineering, 2020, 28(10): 2384–2391. doi: 10.37188/OPE.20202810.2384.
    [9] DAI Jisheng and SO H C. Real-valued sparse Bayesian learning for DOA estimation with arbitrary linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 4977–4990. doi: 10.1109/TSP.2021.3106741.
    [10] JIN Yi, HE Di, WEI Shuang, et al. Off-grid DOA estimation method based on sparse Bayesian learning with clustered structural-aware prior information[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5469–5483. doi: 10.1109/TVT.2023.3335959.
    [11] 明超, 牛海强, 李整林, 等. 结合稀疏贝叶斯学习的快速运动目标方位估计方法[J/OL]. 声学学报, 2025: 1–21. https://link.cnki.net/urlid/11.2065.o4.20250127.1320.001, 2025.

    MING Chao, NIU Haiqiang, LI Zhenglin, et al. Azimuth estimation of fast-moving targets based on sparse Bayesian learning[J/OL]. Acta Acustica, 2025: 1–21. https://link.cnki.net/urlid/11.2065.o4.20250127.1320.001, 2025.
    [12] PAPAGEORGIOU G, SELLATHURAI M, and ELDAR Y. Deep networks for direction-of-arrival estimation in low SNR[J]. IEEE Transactions on Signal Processing, 2021, 69: 3714–3729. doi: 10.1109/TSP.2021.3089927.
    [13] 王珍珠, 王文博, 李赫, 等. 波束域特征融合的浅海水平阵目标方位估计[J]. 声学学报, 2024, 49(5): 939–955. doi: 10.12395/0371-0025.2023029.

    WANG Zhenzhu, WANG Wenbo, LI He, et al. Direction of arrival estimation using a horizontal array with beamforming domain feature fusion in shallow water[J]. Acta Acustica, 2024, 49(5): 939–955. doi: 10.12395/0371-0025.2023029.
    [14] QIN Yanhua. Deep networks for direction of arrival estimation with sparse prior in low SNR[J]. IEEE Access, 2023, 11: 44637–44648. doi: 10.1109/ACCESS.2023.3273126.
    [15] ZHENG Shilian, ZHUANG Yang, SHEN Weiguo, et al. Deep learning-based DOA estimation[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(3): 819–835. doi: 10.1109/TCCN.2024.3360527.
    [16] 俞帆, 陈格格, 沈明威. 基于双通道复数卷积神经网络的DOA估计算法[J]. 现代雷达, 2022, 44(12): 81–86. doi: 10.16592/j.cnki.1004-7859.2022.12.012.

    YU Fan, CHEN Gege, and SHEN Mingwei. DOA estimation algorithm based on dual-channel complex-valued convolutional neural network[J]. Modern Radar, 2022, 44(12): 81–86. doi: 10.16592/j.cnki.1004-7859.2022.12.012.
    [17] CHUNG H, SEO H, JOO J, et al. Off-grid DOA estimation via two-stage cascaded neural network[J]. Energies, 2021, 14(1): 228. doi: 10.3390/en14010228.
    [18] LIU Mingda, NIU Haiqiang, LI Zhengli, et al. A convolutional neural network combining classification and regression for source localization in shallow water[J]. Journal of Physics: Conference Series, 2023, 2486(1): 012068. doi: 10.1088/1742-6596/2486/1/012068.
    [19] 袁野. 基于深度学习的高性能信号波达方向估计方法研究[D]. [博士论文], 国防科技大学, 2022: 112–113. doi: 10.27052/d.cnki.gzjgu.2022.000011.

    YUAN Ye. Research on deep learning based direction-of-arrival estimation with high performance[D]. [Ph. D. dissertation], National University of Defense Technology, 2022: 112–113. doi: 10.27052/d.cnki.gzjgu.2022.000011.
    [20] 高明哲, 祝明波. 噪声对维纳滤波反卷积算法性能影响的分析[J]. 舰船电子工程, 2012, 32(12): 35–36. doi: 10.3969/j.issn.1627-9730.2012.12.011.

    GAO Mingzhe and ZHU Mingbo. Analysis on noise's impact on the performance of wiener filter deconvolution algorithm[J]. Ship Electronic Engineering, 2012, 32(12): 35–36. doi: 10.3969/j.issn.1627-9730.2012.12.011.
    [21] 李晨, 田应伟, 赵久瑞, 等. 基于维纳滤波的船载地波雷达海流反演方法[J]. 现代雷达, 2025, 47(6): 1–7. doi: 10.16592/j.cnki.1004-7859.20231217001.

    LI Chen, TIAN Yingwei, ZHAO Jiurui, et al. A current inversion method based on wiener filtering for shipborne surface wave radar[J]. Modern Radar, 2025, 47(6): 1–7. doi: 10.16592/j.cnki.1004-7859.20231217001.
    [22] 董赛蒙, 邢传玺, 魏光春, 等. 多目标水声信号的稀疏重构反卷积测向算法[J]. 声学技术, 2024, 43(5): 636–646. doi: 10.16300/j.cnki.1000-3630.2024.05.005.

    DONG Saimeng, XING Chuanxi, WEI Guangchun, et al. Deconvolution direction finding algorithm for sparse reconstruction of multi-target underwater acoustic signals[J]. Technical Acoustics, 2024, 43(5): 636–646. doi: 10.16300/j.cnki.1000-3630.2024.05.005.
    [23] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [24] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014: 1–15. doi: 10.48550/arXiv.1412.6980.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  40
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-07-29
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回