高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
崔亚奇, 周天, 熊伟, 许赛飞, 林传齐, 夏沭涛, 王子玲, 顾祥岐, 孙炜玮, 李浩然, 孔战, 唐浩, 徐平亮, 张杰, 但波, 郭恒光, 董凯, 于洪波, 陆源, 陈威, 何少炜. 海上船只目标多源数据集可见光图像部分[J]. 电子与信息学报. doi: 10.11999/JEIT250138
引用本文: 崔亚奇, 周天, 熊伟, 许赛飞, 林传齐, 夏沭涛, 王子玲, 顾祥岐, 孙炜玮, 李浩然, 孔战, 唐浩, 徐平亮, 张杰, 但波, 郭恒光, 董凯, 于洪波, 陆源, 陈威, 何少炜. 海上船只目标多源数据集可见光图像部分[J]. 电子与信息学报. doi: 10.11999/JEIT250138
CUI Yaqi, ZHOU Tian, XIONG Wei, XU Saifei, LIN Chuanqi, XIA Mutao, WANG Ziling, GU Xiangqi, SUN Weiwei, LI Haoran, KONG Zhan, TANG Hao, XU Pingliang, ZHANG Jie, DAN Bo, GUO Hengguang, DONG Kai, YU Hongbo, LU Yuan, CHEN Wei, HE Shaowei. Visible Figure Part of Multi-source Maritime Ship Dataset[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250138
Citation: CUI Yaqi, ZHOU Tian, XIONG Wei, XU Saifei, LIN Chuanqi, XIA Mutao, WANG Ziling, GU Xiangqi, SUN Weiwei, LI Haoran, KONG Zhan, TANG Hao, XU Pingliang, ZHANG Jie, DAN Bo, GUO Hengguang, DONG Kai, YU Hongbo, LU Yuan, CHEN Wei, HE Shaowei. Visible Figure Part of Multi-source Maritime Ship Dataset[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250138

海上船只目标多源数据集可见光图像部分

doi: 10.11999/JEIT250138 cstr: 32379.14.JEIT250138
基金项目: 国家自然基金联合基金(U2433216),国家自然科学基金面上基金(62171453)
详细信息
    作者简介:

    崔亚奇:男,博士,副教授,研究方向为多源信息融合、人工智能交叉应用等

    周天:男,博士生,研究方向为人工智能、信息融合等

    熊伟:男,博士,教授,研究方向为为多传感器信息融合、指挥自动化等

    许赛飞:男,硕士生,研究方向为深度学习、计算机视觉等

    林传齐:男,硕士生,研究方向为深度学习、航迹预测等

    通讯作者:

    周天 zhoutian0925@163.com

  • 中图分类号: TP391.41

Visible Figure Part of Multi-source Maritime Ship Dataset

Funds: The National Natural Science Foundation of China Joint (NSFC) Fund Project (U2433216), The National Natural Science Foundation of China General (NSFC) Program Project (62171453)
  • 摘要: 为适应海上船只目标智能感知发展趋势,针对现有海上船只目标感知数据集信源单一、船只目标类别少、场景简单等问题,该文研制了由雷达、可见光、红外、激光、AIS、GPS等传感器构成的海上目标集成采集设备,开展了近2个月船载海上观测实验,累计时长达到200小时,收集海上多源原始数据90 TB;进一步对海量数据进行处理标注,并针对所采集原始数据海量、价值密度低的问题,设计了一套自动标注与人工校验相结合的数据快速标注流程,经多次智能标注模型训练与大量人工校验,目前已构建海上船只目标多源数据集的可见光图像部分(MSMS-VF)。该数据集涵盖客船、货船、快艇、帆船、渔船、浮标、漂浮物及海上平台等9种目标类别,包含265,233张图像,1,097,268个边界标注框,小目标占比达到55.88%,覆盖了多样化的海洋目标环境,可为目标检测、目标识别、目标跟踪等智能算法研究提供训练测试数据原料。未来,团队将陆续发布数据集的其他部分,并结合新的观测实验,对数据集进行不断更新。
  • 图  1  船端海上观测单元实物图

    图  2  采集设备配置示意图

    图  3  双目广角摄像头

    图  4  基于AIS数据的芝罘湾船只热力图

    图  5  采集数据可视化图

    图  6  数据集构建流程图

    图  7  各目标类别图例

    图  8  标注框分布情况

    图  9  每个目标类别的尺寸分布

    图  10  数据集中不同天气、光照与环境背景

    图  11  船舶显示比例变化

    图  12  遮挡变化

    图  13  不同算法跟踪效果示例

    表  1  通用目标检测数据集概览

    数据集 图片总数 类别总数 标注框
    数量
    船舶
    种类
    船舶
    数量
    COCO[12] 330,000 80 2,500,000 1 3146
    PASCAL VOC[13] 11,530 20 27,450 1 353
    ImageNet[14] 14,197,122 1000 1,034,908 10 1071
    OpenImage[15] 9,000,000 600 16,000,000 5 1000
    下载: 导出CSV

    表  2  船舶目标检测数据集

    数据集 图片总数 标注总数 标注类别数
    SeaShips[16] 31,455 40,077 6
    SMD[17] 17,450 192,980 6
    ABOShips[18] 9,880 41,967 9
    UnityShip [19] 100,000 194054 10
    Mcships[20] 14,709 26,529 13
    KOLOMVERSE[21] 186,419 732,039 5
    本数据集 265,233 1,097,268 9
    下载: 导出CSV

    表  3  海上目标分类及标注框数量

    目标类别 数量 描述
    客船 95, 109 客船、游船、渡轮等中大型船舶
    货船 335, 687 货船、工程船、拖船等多种大型船舶
    快艇 212, 413 快艇、摩托艇、皮划艇等小型船舶
    渔船 22, 230 渔船、钓鱼船等中小型船舶
    帆船 224, 511 帆船等利用风力航行的船舶
    浮标 65, 349 航标等航道标志物
    漂浮物 118, 110 浮球等海面漂浮物
    海上平台 19, 561 光伏平台、海洋牧场等海上作业平台
    其他 4, 298 管道型浮排、海警船、养殖区等其他目标
    下载: 导出CSV

    表  4  标注属性

    目标像素
    尺寸
    天气情况 目标显示
    比例
    是否被
    遮挡
    光照情况 目标背景
    属性
    小尺寸 晴天 全部 无遮挡 良好 海面背景
    中尺寸 雨天 部分 遮挡 逆光 复杂背景
    大尺寸 雾霾
    下载: 导出CSV

    表  5  目标尺寸等级分布

    尺寸等级 小尺寸 中尺寸 大尺寸
    极小尺寸 相对小尺寸 一般小尺寸
    像素面积范围 0~144 144~400 400~1024 1024~2048 >2048
    标注框数量 195,753 201,569 215,805 153,354 330,787
    占比(%) 17.84 18.37 19.67 13.98 30.14
    下载: 导出CSV

    表  6  各目标检测模型整体评估结果

    模型 主干网络 输入分辨率 评估数据集 P R F1 mAP50 mAP50-95 FPS
    YOLOv5[26] CSPDarknet 640×640 val 0.959 0.764 0.850 0.829 0.560 32.74
    test 0.954 0.779 0.858 0.829 0.561
    YOLOv8[27] YOLOv8s 640×640 val 0.918 0.755 0.829 0.837 0.590 35.36
    test 0.936 0.745 0.830 0.833 0.599
    YOLOv11[28] YOLOv11s 640×640 val 0.929 0.759 0.835 0.841 0.592 34.43
    test 0.930 0.76 0.836 0.838 0.604
    RT-DETR[6] Resnet50 800×800 val 0.694 0.625 0.657 0.664 0.356 28.25
    test 0.690 0.628 0.658 0.665 0.356
    Faster-RNN[7] Vgg16 600×600 val 0.695 0.381 0.470 0.224 0.139 18.21
    test 0.694 0.388 0.480 0.221 0.138
    Faster-RNN[7] Resnet50 600×600 val 0.606 0.408 0.47 0.255 0.142 16.81
    test 0.594 0.425 0.48 0.243 0.140
    SSD[24] Vgg16 300×300 val 0.877 0.365 0.49 0.508 0.218 15.41
    test 0.877 0.374 0.500 0.503 0.223
    SSD[24] mobilenetv2 300×300 val 0.703 0.374 0.490 0.346 0.123 21.88
    test 0.695 0.371 0.480 0.343 0.127
    retinanet[25] Resnet50 600×600 val 0.990 0.213 0.340 0.118 0.079 14.85
    test 0.994 0.220 0.34 0.119 0.081
    下载: 导出CSV

    表  7  各目标检测模型在不同类别目标的评估结果

    目标检测
    模型
    评估数据集 mAP50
    客船 货船 快艇 渔船 帆船 浮标 漂浮物 海上平台 其他
    YOLOv5[26]
    (CSPDarknet)
    val 0.948 0.944 0.547 0.649 0.884 0.744 0.829 0.983 0.934
    test 0.951 0.947 0.554 0.645 0.885 0.752 0.819 0.951 0.914
    YOLOv8[27]
    (YOLOv8s)
    val 0.953 0.940 0.535 0.723 0.889 0.706 0.826 0.993 0.968
    test 0.958 0.943 0.541 0.689 0.888 0.713 0.829 0.994 0.941
    YOLOv11[28]
    (YOLOv11)
    val 0.959 0.943 0.542 0.727 0.887 0.717 0.833 0.994 0.971
    test 0.964 0.946 0.549 0.706 0.889 0.720 0.832 0.995 0.937
    RT-DETR[6]
    (Resnet50)
    val 0.872 0.859 0.379 0.420 0.715 0.403 0.533 0.926 0.871
    test 0.874 0.864 0.383 0.416 0.731 0.416 0.532 0.928 0.836
    Faster-RNN[7]
    (Vgg16)
    val 0.588 0.318 0.070 0.061 0.441 0.044 0.044 0.235 0.197
    test 0.594 0.322 0.072 0.054 0.441 0.039 0.040 0.256 0.171
    Faster-RNN[7]
    (Resnet50)
    val 0.607 0.386 0.079 0.071 0.446 0.048 0.039 0.289 0.325
    test 0.627 0.388 0.080 0.061 0.455 0.040 0.037 0.317 0.317
    SSD[24]
    (Vgg16)
    val 0.795 0.736 0.230 0.361 0.557 0.190 0.268 0.881 0.820
    test 0.807 0.746 0.217 0.343 0.552 0.192 0.256 0.895 0.803
    SSD[24]
    (mobilenetv2)
    val 0.617 0.466 0.117 0.220 0.367 0.101 0.190 0.594 0.618
    test 0.623 0.473 0.116 0.225 0.370 0.106 0.196 0.603 0.549
    Retinanet[25]
    (Resnet50)
    val 0.375 0.176 0.036 0.018 0.280 0.008 0.004 0.087 0.042
    test 0.387 0.173 0.038 0.021 0.275 0.006 0.006 0.102 0.022
    下载: 导出CSV

    表  8  各目标跟踪算法整体评估结果

    跟踪算法MOTAMOTPIDF1IDPIDRS
    SORT[29]0.5852.2530.6380.8440.5130.609
    OC-SORT[30]0.5902.0940.6750.8890.5440.629
    DeepSORT[31]0.6132.6480.6770.8600.5580.637
    ByteTrack[32]0.5902.4460.6710.8800.5430.633
    MotionTrack[33]0.6061.8420.7500.9810.6080.681
    下载: 导出CSV

    表  9  各目标跟踪算法对于不同类别目标的评估结果

    跟踪算法 Si
    客船 货船 快艇 帆船 浮标 漂浮物 海上平台 其他
    SORT[29] 0.904 0.757 0.134 0.659 0.462 0.608 0.885 0.695
    OC-SORT[30] 0.906 0.779 0.148 0.692 0.496 0.614 0.921 0.691
    DeepSORT[31] 0.900 0.776 0.157 0.729 0.555 0.611 0.903 0.679
    ByteTrack[32] 0.909 0.783 0.125 0.689 0.495 0.628 0.945 0.823
    MotionTrack[33] 0.942 0.812 0.238 0.742 0.580 0.590 0.940 0.840
    下载: 导出CSV
  • [1] PERERA L P, OLIVEIRA P, and SOARES C G. Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1188–1200. doi: 10.1109/TITS.2012.2187282.
    [2] LIU Yand, AN Bailin, CHEN Shaohua, et al. Multi‐target detection and tracking of shallow marine organisms based on improved YOLO v5 and DeepSORT[J]. IET Image Processing, 2024, 18(9): 2273–2290. doi: 10.1049/ipr2.13090.
    [3] LIU Zhixiang, ZHANG Youmin, YU Xiang, et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71–93. doi: 10.1016/j.arcontrol.2016.04.018.
    [4] 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466–1489. doi: 10.16383/j.aas.2016.c150823.

    YIN Hongpeng, CHEN Bo, CHAI Yi, et al. Vision-based object detection and tracking: A review[J]. Acta Automatica Sinica, 2016, 42(10): 1466–1489. doi: 10.16383/j.aas.2016.c150823.
    [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [6] ZHAO Yian, LV Wenyu, XU Shangliang, et al. DETRs beat YOLOs on real-time object detection[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 16965–16974. doi: 10.1109/CVPR52733.2024.01605.
    [7] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [8] JIANG Zhikai, SU Li, and SUN Yixin. YOLOv7-ship: A lightweight algorithm for ship object detection in complex marine environments[J]. Journal of Marine Science and Engineering, 2024, 12(1): 190. doi: 10.3390/jmse12010190.
    [9] FAN Xiyu, HU Zhuhua, ZHAO Yaochi, et al. A small-ship object detection method for satellite remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11886–11898. doi: 10.1109/JSTARS.2024.3419786.
    [10] YANG Defu, SOLIHIN M I, ARDIYANTO I, et al. Author correction: A streamlined approach for intelligent ship object detection using EL-YOLO algorithm[J]. Scientific Reports, 2024, 14(1): 19408. doi: 10.1038/s41598-024-70017-1.
    [11] GUO Yiran, SHEN Qiang, AI Danni, et al. Sea-IoUTracker: A more stable and reliable maritime target tracking scheme for unmanned vessel platforms[J]. Ocean Engineering, 2024, 299: 117243. doi: 10.1016/j.oceaneng.2024.117243.
    [12] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. doi: 10.1007/978-3-319-10602-1_48.
    [13] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
    [14] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
    [15] KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset V4: Unified image classification, object detection, and visual relationship detection at scale[J]. International Journal of Computer Vision, 2020, 128(7): 1956–1981. doi: 10.1007/S11263-020-01316-Z.
    [16] SHAO Zhenfeng, WU Wenjing, WANG Zhongyuan, et al. SeaShips: A large-scale precisely-annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2593–2604. doi: 10.1109/TMM.2018.2865686.
    [17] PRASAD D K, RAJAN D, RACHMAWATI L, et al. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 1993–2016. doi: 10.1109/TITS.2016.2634580.
    [18] IANCU B, SOLOVIEV V, ZELIOLI L, et al. ABOships—an inshore and offshore maritime vessel detection dataset with precise annotations[J]. Remote Sensing, 2021, 13(5): 988. doi: 10.3390/rs13050988.
    [19] HE Boyong, LI Xianjiang, HUANG Bo, et al. UnityShip: A large-scale synthetic dataset for ship recognition in aerial images[J]. Remote Sensing, 2021, 13(24): 4999. doi: 10.3390/rs13244999.
    [20] ZHENG Yitong and ZHANG Shun. Mcships: A large-scale ship dataset for detection and fine-grained categorization in the wild[C]. 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 2020: 1–6. doi: 10.1109/ICME46284.2020.9102907.
    [21] NANDA A, CHO S W, LEE H, et al. KOLOMVERSE: Korea open large-scale image dataset for object detection in the maritime universe[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20832–20840. doi: 10.1109/TITS.2024.3449122.
    [22] 何友, 周伟. 海上信息感知大数据技术[J]. 指挥信息系统与技术, 2018, 9(2): 1–7. doi: 10.15908/j.cnki.cist.2018.02.001.

    HE You and ZHOU Wei. Big data technology for maritime information sensing[J]. Command Information System and Technology, 2018, 9(2): 1–7. doi: 10.15908/j.cnki.cist.2018.02.001.
    [23] CHENG Gong, YUAN Xiang, and YAO Xiwen, et al. Towards large-scale small object detection: Survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467–13488. doi: 10.1109/TPAMI.2023.3290594.
    [24] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826.
    [26] JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralytics/yolov5: V6.1-TensorRT, TensorFlow edge TPU and OpenVINO export and inference[J]. Zenodo, 2022. doi: 10.5281/zenodo.6222936.
    [27] AKYON F C. Yolov8.3. 62[EB/OL]. https://github.com/ultralytics/ultralytics/releases/tag/v8.3.62, 2024.
    [28] KHANAM R and HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. https://arxiv.org/abs/2410.17725, 2024.
    [29] BEWLEY A, GE Zongyuan, OTT L, et al. Simple online and realtime tracking[C]. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 3464–3468. doi: 10.1109/ICIP.2016.7533003.
    [30] CAO Jinkun, PANG Jiangmiao, WENG Xinshuo, et al. Observation-centric SORT: Rethinking SORT for robust multi-object tracking[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 9686–9696. doi: 10.1109/CVPR52729.2023.00934.
    [31] WOJKE N, BEWLEY A, and PAULUS D. Simple online and realtime tracking with a deep association metric[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3645–3649. doi: 10.1109/ICIP.2017.8296962.
    [32] ZHANG Yifu, SUN Peize, JIANG Yi, et al. ByteTrack: Multi-object tracking by associating every detection box[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 1–21. doi: 10.1007/978-3-031-20047-2_1.
    [33] 肖刚, 梁振起, 曾柳, 等. 基于高斯距离匹配的海面多目标跟踪方法及系统[P]. 中国, 202211457200.0, 2023.

    XIAO Gang, LIANG Zhenqi, ZENG Liu, et al. Sea surface multi-target tracking method and system based on Gaussian distance matching[P]. China, 202211457200.0, 2023.
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  123
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-06-05
  • 网络出版日期:  2025-06-24

目录

    /

    返回文章
    返回