高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车联网中路径预测驱动的任务切分与计算资源分配方法

霍如 吕科呈 黄韬

霍如, 吕科呈, 黄韬. 车联网中路径预测驱动的任务切分与计算资源分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT250135
引用本文: 霍如, 吕科呈, 黄韬. 车联网中路径预测驱动的任务切分与计算资源分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT250135
HUO Ru, LÜ Kecheng, HUANG Tao. Task Segmentation and Computing Resource Allocation Method Driven by Path Prediction in Internet of Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250135
Citation: HUO Ru, LÜ Kecheng, HUANG Tao. Task Segmentation and Computing Resource Allocation Method Driven by Path Prediction in Internet of Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250135

车联网中路径预测驱动的任务切分与计算资源分配方法

doi: 10.11999/JEIT250135 cstr: 32379.14.JEIT250135
基金项目: 北京市自然科学基金 (4254064)
详细信息
    作者简介:

    霍如:女,副教授,研究方向为未来网络、车联网、资源调度等

    吕科呈:男,硕士生,研究方向为未来网络、车联网、资源调度等

    黄韬:男,教授,研究方向为未来网络体系架构、路由与交换等

    通讯作者:

    霍如 huoru@bjut.edu.cn

  • 中图分类号: TN929.5

Task Segmentation and Computing Resource Allocation Method Driven by Path Prediction in Internet of Vehicles

Funds: Beijing Natural Science Foundation (4254064)
  • 摘要: 为了应对车联网中车辆终端计算资源有限、车辆高移动性导致的网络拓扑环境频繁变化对传输效率和可靠性的影响,解决边缘算力服务设备资源利用不充分等问题,面向车载边缘计算环境,该文提出一种基于车辆路径预测的任务切分卸载与资源分配方法。针对多车辆多边缘设备的任务卸载与资源分配场景,基于Transformer模型对不同车辆的路径预测结果建立智能任务切分模型。基于多智能体深度强化学习(MADRL)算法将计算资源分配问题表述为优化问题,在考虑移动边缘计算(MEC)服务器计算资源的约束条件下,以车辆任务的处理时延和MEC服务器的计算资源利用率为优化目标,实现计算资源的优化分配。仿真结果表明,与基准方法相比,该文所提方法降低54.1%的卸载计算延迟,提升资源利用率达13.3%。
  • 图  1  多车辆边缘计算场景

    图  2  路径预测驱动的任务切分与计算资源分配方法示例框架

    图  3  Transformer车辆路径预测模型结构

    图  4  基于MADDPG的MADRL框架

    图  5  不同路径预测步数方案对比

    图  6  不同方法任务处理时延对比

    图  7  不同权重系数奖励对比

    图  8  不同任务车辆数量奖励对比

    表  1  不同模型预测性能指标结果

    模型MSERMSEMAE
    Transformer0.01160.10810.0652
    LSTM0.02460.15680.1062
    BiLSTM0.03230.17960.1293
    下载: 导出CSV
  • [1] IP A, IRIO L, and OLIVEIRA R. Vehicle trajectory prediction based on LSTM recurrent neural networks[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–5. doi: 10.1109/VTC2021-Spring51267.2021.9449038.
    [2] LIANG Ming, YANG Bin, ZENG Wenyuan, et al. PnPNet: End-to-end perception and prediction with tracking in the loop[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11550–11559. doi: 10.1109/CVPR42600.2020.01157.
    [3] LAGOUTARIS V and MOUSTAKAS K. Motion prediction of traffic agents with hybrid recurrent-convolutional neural networks[C]. 2023 24th International Conference on Digital Signal Processing (DSP), Rhodes (Rodos), Greece, 2023: 1–5. doi: 10.1109/DSP58604.2023.10167941.
    [4] QIAO Shaojie, HAN Nan, WANG Junfeng, et al. Predicting long-term trajectories of connected vehicles via the prefix-projection technique[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2305–2315. doi: 10.1109/TITS.2017.2750075.
    [5] HAO Zixu, HUANG Xing, WANG Kaige, et al. Attention -based GRU for driver intention recognition and vehicle trajectory prediction[C]. 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China, 2020: 86–91. doi: 10.1109/CVCI51460.2020.9338510.
    [6] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(1): 175–185. doi: 10.1109/TIV.2020.2991952.
    [7] QIE Tianqi, WANG Weida, YANG Chao, et al. Trajectory prediction method using deep learning for intelligent and connected vehicles[C]. 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS), Wuhan, China, 2023: 1–5. doi: 10.1109/ICPS58381.2023.10128049.
    [8] LIU Xulei, WANG Yafei, JIANG Kun, et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19076–19087. doi: 10.1109/TITS.2022.3160630.
    [9] SINGH A. Trajectory-prediction with vision: A survey[C]. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, France, 2023: 3310–3315. doi: 10.1109/ICCVW60793.2023.00356.
    [10] WANG Haipeng, LIN Zhipeng, GUO Kun, et al. Computation offloading based on game theory in MEC-assisted V2X networks[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473788.
    [11] TANG Dian, ZHANG Xuefei, and TAO Xiaofeng. Delay-optimal temporal-spatial computation offloading schemes for vehicular edge computing systems[C]. 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019: 1–6. doi: 10.1109/WCNC.2019.8885702.
    [12] PHAM X Q, HUYNH-THE T, HUH E N, et al. Partial computation offloading in parked vehicle-assisted multi-access edge computing: A game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10220–10225. doi: 10.1109/TVT.2022.3182378.
    [13] ZHANG Haibo, LIU Xiangyu, XU Yongjun, et al. Partial offloading and resource allocation for MEC-assisted vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1276–1288. doi: 10.1109/TVT.2023.3306939.
    [14] QIN Meng, CHENG Nan, JING Zewei, et al. Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks[J]. IEEE Internet of Things Journal, 2021, 8(3): 1896–1907. doi: 10.1109/JIOT.2020.3015970.
    [15] WU Yuan, SHI Binghua, QIAN Liping, et al. Energy-efficient multi-task multi-access computation offloading via NOMA transmission for IoTs[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4811–4822. doi: 10.1109/TII.2019.2944839.
    [16] MALEKI H, BAŞARAN M, and DURAK-ATA L. Handover-enabled dynamic computation offloading for vehicular edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9394–9405. doi: 10.1109/TVT.2023.3247889.
    [17] ZHANG Cui, ZHANG Wenjun, WU Qiong, et al. Distributed deep reinforcement learning-based gradient quantization for federated learning enabled vehicle edge computing[J]. IEEE Internet of Things Journal, 2025, 12(5): 4899–4913. doi: 10.1109/JIOT.2024.3447036.
    [18] YUAN Jing, ZHENG Yu, XIE Xing, et al. Driving with knowledge from the physical world[C]. The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, USA, 2011: 316–324. doi: 10.1145/2020408.2020462.
    [19] YUAN Jing, ZHENG YÜ, ZHANG Chengyang, et al. T-drive: Driving directions based on taxi trajectories[C]. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 99–108. doi: 10.1145/1869790.1869807.
    [20] LIN Jie, HUANG Siqi, ZHANG Hanlin, et al. A deep-reinforcement-learning-based computation offloading with mobile vehicles in vehicular edge computing[J]. IEEE Internet of Things Journal, 2023, 10(17): 15501–15514. doi: 10.1109/JIOT.2023.3264281.
    [21] DENG Taoyu, CHEN Yueyun, CHEN Guang, et al. Task offloading based on edge collaboration in MEC-enabled IoV networks[J]. Journal of Communications and Networks, 2023, 25(2): 197–207. doi: 10.23919/JCN.2023.000004.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  76
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-07-21
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回