Study on Satellite Signal Recognition with Multi-scale Feature Attention Network
-
摘要: 针对卫星通信信号调制识别难题以及忽略不同频率和时间尺度特征的融合问题,该文提出多尺度特征注意力网络模型。该模型融合去噪卷积模块和多尺度全局感知模块,利用多尺度膨胀卷积和空间金字塔池化,结合高效通道注意力机制,有效捕捉不同频率和时间尺度特征。实验表明,在典型莱斯信道及数字视频广播卫星第2代标准信号制式下,该模型在[0, 5] dB区间内,对QPSK等卫星典型调制信号的类间识别率达到96.8%,性能优于传统模型的同时,参数量以及单周期训练时间显著减少,并且在低信噪比下仍保持高识别精度,充分验证了模型算法的有效性。Abstract:
Objective Automatic modulation recognition of satellite communication signals is essential for communication security, signal monitoring, and efficient spectrum management. Traditional methods face limitations in handling non-stationary signals, require substantial prior knowledge, and often incur high computational costs. To address these issues, this study proposes an Enhanced Multi-Scale Feature Attention Network (EMSF) for satellite signal recognition. EMSF is designed to deliver high recognition accuracy, robustness under noisy conditions, and computational efficiency, making it suitable for deployment on resource-constrained platforms. This model contributes to satellite communication, signal processing, and deep learning by improving the reliability and efficiency of automatic signal recognition. Methods The EMSF integrates four key components to effectively capture and classify satellite signals: Data Augmentation (DA), a denoising convolution module, a multi-scale global perception module, and an Efficient Channel Attention (ECA) mechanism. DA expands the training dataset via rotational transformations to improve generalization and robustness. A deep residual network with soft thresholding selectively suppresses noise while preserving key signal features, enhancing performance under low Signal-to-Noise Ratio (SNR) conditions. The multi-scale global perception module combines dilated convolutions with Spatial Pyramid Pooling (SPP) to extract both global and local contextual information across frequency and time scales, enabling the model to detect subtle signal variations. The ECA module learns channel-wise dependencies to emphasize informative features and suppress irrelevant ones, improving classification accuracy. The model is trained using the Adam optimizer with an adaptive learning rate and a cross-entropy loss function. Custom callbacks monitor validation loss and dynamically adjust the learning rate during training. Results and Discussions Extensive experiments were conducted using simulated satellite signals across various modulation types and SNR levels. The EMSF model consistently outperforms state-of-the-art models—including MCLDNN, MCNet, CGDNet, IC-AMCNet, PET-CGDNN, and ResNet—in terms of classification accuracy, parameter efficiency, and computational cost. Model accuracy improves with increasing SNR, maintaining strong performance even under low SNR conditions ( Fig. 3 ). Notably, EMSF achieves nearly 90% accuracy for QAM16 and QAM64 at 0 dB SNR, demonstrating its ability to detect subtle signal variations. Compared with other models, EMSF achieves higher accuracy using significantly fewer parameters and shorter training time (Table 1 ;Fig. 5 ). Ablation experiments further verify the contribution of each component, with the denoising convolution module, SPP layer, and data augmentation strategy each yielding measurable performance gains (Table 2 ;Fig. 6 ).Conclusions The proposed EMSF demonstrates high accuracy, robustness under noisy conditions, and computational efficiency in satellite signal recognition. Its suitability for deployment in resource-constrained devices highlights its practical applicability. The EMSF model contributes to the advancement of satellite communication and offers a foundation for further research in signal processing and deep learning. -
表 1 模型性能对比
模型名称 参数量 总训练时间(s) 单周期训练时间(s) 测试集损失值 测试集准确率(%) 最高准确率(%) EMSF 17319 1682.65 10.83 1.08 59.89 91.66 CGDNet 124676 828.68 5.26 1.10 56.27 82.25 MCNet 121611 2597.63 23.78 1.14 55.92 81.86 IC-AMCNet 1264011 865.56 5.72 1.14 58.65 84.92 MCLDNN 406199 1410.47 13.78 1.09 59.32 91.36 PET-CGDNN 71487 552.11 4.79 1.11 57.27 90.12 ResNet 3098283 2348.81 17.44 1.21 53.98 82.78 表 2 消融实验
去除模块 准确率(%) ECA 59.12 金字塔池化层 57.04 多尺度全局感知模块 58.78 数据增强 55.25 去噪卷积模块 51.42 -
[1] SMITH A, EVANS M, and DOWNEY J. Modulation classification of satellite communication signals using cumulants and neural networks[C]. 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), Cleveland, USA, 2017: 1–8. doi: 10.1109/CCAAW.2017.8001878. [2] 冯晓东, 曾军. 基于决策论的数字调制信号识别方法[J]. 电子科技, 2015, 28(4): 124–127. doi: 10.16180/j.cnki.issn1007-7820.2015.04.033.FENG Xiaodong and ZENG Jun. A method for digital modulation recognition based on decision theory[J]. Electronic Science and Technology, 2015, 28(4): 124–127. doi: 10.16180/j.cnki.issn1007-7820.2015.04.033. [3] HAZZA A, SHOAIB M, ALSHEBEILI S A, et al. An overview of feature-based methods for digital modulation classification[C]. 2013 1st International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, United Arab Emirates, 2013: 1–6. doi: 10.1109/ICCSPA.2013.6487244. [4] 闫文康, 闫毅, 范亚楠, 等. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968–975. doi: 10.11728/cjss2021.06.968.YAN Wenkang, YAN Yi, FAN Yanan, et al. A modulation recognition algorithm based on wavelet transform entropy and high-order cumulant for satellite signal modulation[J]. Chinese Journal of Space Science, 2021, 41(6): 968–975. doi: 10.11728/cjss2021.06.968. [5] 杨洪娟, 时统志, 李博, 等. 基于联合特征参数的卫星单-混信号调制识别研究[J]. 电子与信息学报, 2022, 44(10): 3499–3506. doi: 10.11999/JEIT210768.YANG Hongjuan, SHI Tongzhi, LI Bo, et al. Research on satellite single-mixed signal modulation recognition based on joint feature parameters[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3499–3506. doi: 10.11999/JEIT210768. [6] ZHANG Xueqin, LUO Zhongqiang, XIAO Wenshi, et al. Deep learning-based modulation recognition for MIMO systems: Fundamental, methods, challenges[J]. IEEE Access, 2024, 12: 112558–112575. doi: 10.1109/ACCESS.2024.3440350. [7] 袁德品, 赵亮, 葛宪生. 基于复数深度神经网络的电磁信号调制识别[J]. 电子科技, 2025, 38(3): 1–6. doi: 10.16180/j.cnki.issn1007-7820.2025.03.001.YUAN Depin, ZHAO Liang, and GE Xiansheng. Electromagnetic signal modulation recognition based on complex-valued deep neural network[J]. Electronic Science and Technology, 2025, 38(3): 1–6. doi: 10.16180/j.cnki.issn1007-7820.2025.03.001. [8] ELSAGHEER M M and RAMZY S M. A hybrid model for automatic modulation classification based on residual neural networks and long short term memory[J]. Alexandria Engineering Journal, 2023, 67: 117–128. doi: 10.1016/j.aej.2022.08.019. [9] O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022. [10] LOTFY M, ESSAI M, and ATALLAH H. Automatic modulation classification: Convolutional deep learning neural networks approaches[J]. SVU-International Journal of Engineering Sciences and Applications, 2023, 4(1): 48–54. doi: 10.21608/svusrc.2022.162662.1076. [11] XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453. [12] HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 24(4): 811–815. doi: 10.1109/LCOMM.2020.2968030. [13] 张承畅, 李晓梦, 李吉利, 等. 基于 JDA-BP 网络的 MQAM 信号调制识别[J]. 实验技术与管理, 2024, 41(5): 31–37. doi: 10.16791/j.cnki.sjg.2024.05.005.ZHANG Chengchang, LI Xiaomeng, LI Jili, et al. Recognition method for multiple quadrature amplitude modulation signals based on the JDA-BP network[J]. Experimental Technology and Management, 2024, 41(5): 31–37. doi: 10.16791/j.cnki.sjg.2024.05.005. [14] PACAL I, CELIK O, BAYRAM B, et al. Enhancing EfficientNetv2 with global and efficient channel attention mechanisms for accurate MRI-Based brain tumor classification[J]. Cluster Computing, 2024, 27(8): 11187–11212. doi: 10.1007/s10586-024-04532-1. [15] ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681–4690. doi: 10.1109/TII.2019.2943898. [16] YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2015. [17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824. [18] NJOKU J N, MOROCHO-CAYAMCELA M E, and LIM W. CGDNet: Efficient hybrid deep learning model for robust automatic modulation recognition[J]. IEEE Networking Letters, 2021, 3(2): 47–51. doi: 10.1109/LNET.2021.3057637. [19] HERMAWAN A P, GINANJAR R R, KIM D S, et al. CNN-based automatic modulation classification for beyond 5G communications[J]. IEEE Communications Letters, 2020, 24(5): 1038–1041. doi: 10.1109/LCOMM.2020.2970922. [20] ZHANG Fuxin, LUO Chunbo, XU Jialang, et al. An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation[J]. IEEE Communications Letters, 2021, 25(10): 3287–3290. doi: 10.1109/LCOMM.2021.3102656. [21] LIU Xiaoyu, YANG Diyu, and EL GAMAL A. Deep neural network architectures for modulation classification[C]. 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 915–919. doi: 10.1109/ACSSC.2017.8335483. -