高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星地协同通信场景下智能超表面多维资源非正交动态匹配算法设计

梁微 李奥莹 罗薇 李立欣 林文晟 李旭 卫保国

梁微, 李奥莹, 罗薇, 李立欣, 林文晟, 李旭, 卫保国. 星地协同通信场景下智能超表面多维资源非正交动态匹配算法设计[J]. 电子与信息学报. doi: 10.11999/JEIT250078
引用本文: 梁微, 李奥莹, 罗薇, 李立欣, 林文晟, 李旭, 卫保国. 星地协同通信场景下智能超表面多维资源非正交动态匹配算法设计[J]. 电子与信息学报. doi: 10.11999/JEIT250078
LIANG Wei, LI Aoying, LUO Wei, LI Lixin, LIN Wensheng, LI Xu, WEI Baoguo. Resource Allocation in Reconfigurable Intelligent Surfaces Assisted NOMA Based Space-Air-Ground Integrated Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250078
Citation: LIANG Wei, LI Aoying, LUO Wei, LI Lixin, LIN Wensheng, LI Xu, WEI Baoguo. Resource Allocation in Reconfigurable Intelligent Surfaces Assisted NOMA Based Space-Air-Ground Integrated Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250078

星地协同通信场景下智能超表面多维资源非正交动态匹配算法设计

doi: 10.11999/JEIT250078 cstr: 32379.14.JEIT250078
基金项目: 深圳市科技计划(GJHZ20220913143203006)
详细信息
    作者简介:

    梁微:副教授,博士生导师,研究方向为5G\6G关键技术、智能超表面、多址接入技术等

    李奥莹:硕士生,研究方向为智能超表面、多址接入技术等

    罗薇:硕士生,研究方向为智能超表面、多址接入技术、太赫兹通信等

    李立欣:教授,博士生导师,研究方向为智能通信技术等

    林文晟:副教授,硕士生导师,研究方向为语义通信等

    李旭:副教授,硕士生导师,研究方向为智能信号处理等

    卫保国:副教授,硕士生导师,研究方向为深度学习、信号处理等

    通讯作者:

    梁微 liangwei@nwpu.edu.cn

  • 中图分类号: TN927

Resource Allocation in Reconfigurable Intelligent Surfaces Assisted NOMA Based Space-Air-Ground Integrated Network

Funds: Shenzhen Science and Technology Program (GJHZ20220913143203006)
  • 摘要: 由于地面用户与基站之间有障碍物遮挡,致使直连链路被阻断,该文考虑基于双联路通道的空天地一体化网络(SAGIN),利用空中智能超表面(ARIS)辅助地面用户与基站间的通信,以及高空平台(HAP)辅助低轨卫星(LEO)与地面基站间的通信。具体而言,在第1段上行链路传输中,地面用户将利用ARIS作为无源中继传输信息至基站。在第2段下行链路传输中,LEO作为通信用户先将信号发射至HAP,再由HAP放大信号转发至地面基站,其中HAP和地面基站通信链路可能存在云层阻挡仍需依靠ARIS辅助通信。综上所述,由于地面用户数量远远大于ARIS数量,该文以最大化系统能效为目标,利用1对多双边匹配论算法对地面用户们进行分组,且组内用户采用非正交多址接入(NOMA)方式进行传输,组间用户则采用频分多址接入(FDMA)方式。进一步,在考虑地面用户分组、地面用户功率分配、LEO波束赋形、ARIS群波束赋形等约束条件后,该文所提ARIS赋能交替迭代网络效能优化算法(APIA-SAGIN)设计方案,并通过仿真验证了所提算法的可行性。
  • 图  1  ARIS群辅助空天地一体化网络模型

    图  2  基于参与者更新的双边匹配算法

    图  3  匹配过程流程图

    图  4  针对弱用户匹配算法改进流程图

    图  5  空中RIS元素数目与能效之间关系图

    图  6  LEO发射功率与系统性能之间关系图

    图  7  地面用户小组功率与可达速率之间关系图

    图  8  在不同的用户数目下,空中RIS元素数目与系统性能之间关系图

    1  基于弱用户补偿的中继选择算法

     (1) 初始化:
     (2)  地面用户集合$ K $,ARIS集合$ I $,偏好关系序列$ {{{\bf{Pre}}} _K} $和
        $ {{{\bf{Pre}}} _I} $;
     (3)  触发阈值$ {\varepsilon _{{\text{th}}}} $、加权比例$ {\theta _{{\text{th}}}} $和加权回合$ {N_{\lim }} $。
     (4) 匹配流程
     (5)  Repeat:
     (6)   每一个未匹配的用户按照偏好关系序列向排名最高的
         ARIS发出匹配请求;
     (7)   If 收到匹配请求的ARIS未与地面用户建立匹配关系,
         then ARIS接受地面用户匹配
         请求;
     (8) Else
     (9)   Repeat:
     (10)   If 对于ARIS而言,当前匹配请求的用户在偏好关系序列
         中更靠前,then ARIS接受当前用户匹配请求,拒绝原匹
         配用户;
     (11)   Else计算效用值提升比例,then
     (12)    If当前用户是弱用户,then效用值加权
          $ x_{{\text{cur}}}^k = x_{{\text{cur}}}^k\left( {1 + {\theta _{{\text{th}}}}} \right) $,$ {N_{\lim }} = {N_{\lim }} - 1 $,再次向被拒
          绝的ARIS发出匹配请求;
     (13)    Until 当前用户不是弱用户、当前用户与ARIS建立匹
          配关系或者$ {N_{\lim }} \le 0 $;
     (14)   更新参与者集合和偏好关系序列;
     (15) Until 地面用户集合$ K $,ARIS集合$ I $或偏好关系序列为空。
    下载: 导出CSV

    2  利用APIA-SAGIN求解LEO和ARIS波束赋形

     (1) 完成地面用户中继选择分组,得到I个地面用户分组;
     (2) 初始化:
     (3)   输入ARIS群无源波束赋形$ {{\boldsymbol{\varTheta}}}^{(0)} $,设置外循环迭代次数$ i = 1 $;
     (4)   设置松弛变量初始值$ \left\{ {{\boldsymbol{w}}_{\text{L}}^{\left( 0 \right)},{t^{\left( 0 \right)}},{\nu ^{(0)}},\phi _{\mathrm{L}}^{\left( 0 \right)},{\delta ^{\left( 0 \right)}},{\theta ^{(0)}}} \right\} $,设置CBS内循环迭代次数$ j = 1 $;
     (5)   设置松弛变量值$ \left\{ {{V^{(0)}},{X^{(0)}},{Y^{(0)}},{Z^{(0)}}} \right\} $,设置ARIS内循环迭代次数$ l = 1 $。
     (6) Repeat:
     (7)   LEO有源波束赋形优化:
     (8)    Repeat:
     (9)     基于给定的$ {\boldsymbol{\varTheta }} $,利用CVX求解优化问题(P3),得到$ \left\{ {{\boldsymbol{w}}_{{\text{L}},j}^*,t_j^*,\nu _j^*,\phi _{{\text{L}},j}^*,\delta _j^*,\theta _j^*} \right\} $;
     (10)    If差值$ \left| {t_j^* - {t^{\left( {j - 1} \right)}}} \right| \gt {{\mathrm{var}}} $,then$ \left\{ {{\boldsymbol{w}}_{\mathrm{L}}^{\left( j \right)},{t^{\left( j \right)}},{\nu ^{(j)}},\phi _{\mathrm{L}}^{\left( j \right)},{\delta ^{\left( j \right)}},{\theta ^{(j)}}} \right\} = \left\{ {{\boldsymbol{w}}_{{\mathrm{L}},j}^*,t_j^*,\nu _j^*,\phi _{L,j}^*,\delta _j^*,\theta _j^*} \right\} $,且
          $ j{\text{ }} = {\text{ }}j{\text{ }} + {\text{ }}1 $;
     (11)    Until $ \left| {t_j^* - {t^{\left( {j - 1} \right)}}} \right| \le {{\mathrm{var}}} $,输出$ t_j^* $和$ {\boldsymbol{w}}_{{\text{L}},j}^* $。
     (12)   I个ARIS无源波束赋形优化:
     (13)    Repeat:
     (14)    基于给定的$ {\boldsymbol{w}}_{{\text{L}},j}^* $,利用CVX求解优化问题(P6),得到$ \left\{ {{{\boldsymbol{U}}^*},V_l^*,X_l^*,Y_l^*,Z_l^*} \right\} $;
     (15)    If差值$ \left| {{Z^{\left( l \right)}} - {Z^{\left( {l - 1} \right)}}} \right| \gt {{\mathrm{var}}} $,then$ \left\{ {{V^{(l)}},{X^{\left( l \right)}},{Y^{\left( l \right)}},{Z^{\left( l \right)}}} \right\} = \left\{ {V_l^*,X_l^*,Y_l^*,Z_l^*} \right\} $,且$ l{\text{ }} = {\text{ }}l{\text{ }} + {\text{ }}1 $;
     (16)   Until $ \left| {{Z^{\left( l \right)}} - {Z^{\left( {l - 1} \right)}}} \right| \le {{\mathrm{var}}} $,输出$ {{\boldsymbol{U}}^*} $。
     (17) 利用SVD或者高斯随机化方法从$ {{\boldsymbol{U}}^*} $中获得$ {{\boldsymbol{\varTheta}}}^{*} $。
     (18) 利用$ {{\boldsymbol{\varTheta}}}^{*} $和$ {\boldsymbol{w}}_{{\text{L}},j}^* $计算$ {{\mathrm{EE}}^{\left( i \right)}} $。
     (19) Until $ \left| {{{\mathrm{EE}}^{(i)}} - {{\mathrm{EE}}^{(i - 1)}}} \right| \le \delta $,输出$ {{\mathrm{EE}}^*} = {{\mathrm{EE}}^{(i)}} $。
    下载: 导出CSV

    表  1  ARIS辅助空天地一体化网络仿真参数设置

    参数 取值
    LEO飞行高度 300 km
    HAP飞行高度 20 km
    UAV飞行高度 100~500 m
    UAV水平分布范围半径 800 m
    地面用户水平分布范围半径 600 m
    LEO信道衰减特性 $ \left\{ {m,b,\varOmega } \right\} = \left\{ {10,0.126,0.835} \right\} $
    LEO 3 dB角度 $ {0.5^ \circ } $
    HAP发射功率 10 W
    地面用户总带宽 120 kHz
    LEO带宽 500 kHz
    地面用户路径损耗指数 0.8
    地面用户组内功率之和 1 W
    UAV通信功率$ {P_{\text{C}}} $ 5 W
    噪声谱密度 –90 dB/Hz
    加权回合上限$ {N_{\lim }} $ 5
    收敛阈值 0.001
    下载: 导出CSV
  • [1] PAN Cunhua, REN Hong, WANG Kezhi, et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[J]. IEEE Communications Magazine, 2021, 59(6): 14–20. doi: 10.1109/MCOM.001.2001076.
    [2] IMT-2023(6G)推进组. 智能超表面典型应用、挑战与关键技术[R]. IMT-2023(6G)推进组, 2023.

    IMT-2023 (6G) Promotion Group. Typical applications, challenges, and key technologies of intelligent reflecting surfaces[R]. IMT-2023 (6G) Promotion Group, 2023.
    [3] ZAINUD-DEEN S H. Reconfigurable intelligent surfaces for wireless communications[C]. 2022 39th National Radio Science Conference (NRSC), Cairo, Egypt, 2022: 342–342.
    [4] YOU Li, XIONG Jiayuan, NG D W K, et al. Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 1407–1421. doi: 10.1109/TSP.2020.3047474.
    [5] YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Energy-efficient wireless communications with distributed reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 665–679. doi: 10.1109/TWC.2021.3098632.
    [6] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [7] NIU Hehao, LIN Zhi, AN Kang, et al. Active RIS assisted rate-splitting multiple access network: Spectral and energy efficiency tradeoff[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1452–1467. doi: 10.1109/JSAC.2023.3240718.
    [8] BUDHIRAJA I, VISHNOI V, KUMAR N, et al. Energy-efficient optimization scheme for RIS-assisted communication underlaying UAV with NOMA[C]. 2022 IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 1–6. doi: 10.1109/ICC45855.2022.9838872.
    [9] SUN Yifu, AN Kang, ZHU Yonggang, et al. Energy-efficient hybrid beamforming for multilayer RIS-assisted secure integrated terrestrial-aerial networks[J]. IEEE Transactions on Communications, 2022, 70(6): 4189–4210. doi: 10.1109/TCOMM.2022.3170632.
    [10] ZHAI Zhiyuan, DAI Xinhong, DUO Bin, et al. Energy-efficient UAV-mounted RIS assisted mobile edge computing[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2507–2511. doi: 10.1109/LWC.2022.3206587.
    [11] DO T N, KADDOUM G, NGUYEN T L, et al. Aerial reconfigurable intelligent surface-aided wireless communication systems[C]. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2021: 525–530. doi: 10.1109/PIMRC50174.2021.9569450.
    [12] KURT G K, KHOSHKHOLGH M G, ALFATTANI S, et al. A vision and framework for the High Altitude Platform Station (HAPS) networks of the future[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 729–779. doi: 10.1109/COMST.2021.3066905.
    [13] JEON H B, PARK S H, PARK J, et al. An energy-efficient aerial backhaul system with reconfigurable intelligent surface[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6478–6494. doi: 10.1109/TWC.2022.3149903.
    [14] WANG Yong, LIN Zhi, NIU Hehao, et al. Secure satellite transmission with active reconfigurable intelligent surface[J]. IEEE Communications Letters, 2022, 26(12): 3029–3033. doi: 10.1109/LCOMM.2022.3207190.
    [15] KHAN W U, LAGUNAS E, MAHMOOD A, et al. Energy-efficient RIS-enabled NOMA communication for 6G LEO satellite networks[C]. 2023 IEEE 97th Vehicular Technology Conference, Florence, Italy, 2023: 1–6. doi: 10.1109/VTC2023-Spring57618.2023.10200793.
    [16] GUAN Da, SUN Xin, WANG Jun, et al. RIS-NOMA-aided LEO satellite communication networks[C]. 2022 10th International Conference on Information Systems and Computing Technology, Guilin, China, 2022: 409–413. doi: 10.1109/ISCTech58360.2022.00071.
    [17] WU Min, GUO Kefeng, LIN Zhi, et al. Joint optimization design of RIS-assisted hybrid FSO SAGINs using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3025–3040. doi: 10.1109/TVT.2023.3324970.
    [18] NGUYEN T V, LE H D, and PHAM A T. On the design of RIS–UAV relay-assisted hybrid FSO/RF satellite–aerial–ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 757–771. doi: 10.1109/TAES.2022.3189334.
    [19] DING Zhiguo and POOR H V. A simple design of IRS-NOMA transmission[J]. IEEE Communications Letters, 2020, 24(5): 1119–1123. doi: 10.1109/LCOMM.2020.2974196.
    [20] NGUYEN K T, VU T H, and KIM S. Performance analysis and deep learning design of short-packet communication in multi-RIS-aided multiantenna wireless systems[J]. IEEE Internet of Things Journal, 2023, 10(19): 17265–17281. doi: 10.1109/JIOT.2023.3272674.
    [21] AGHASHAHI S, ZEINALPOUR-YAZDI Z, TADAION A, et al. MU-massive MIMO with multiple RISs: SINR maximization and asymptotic analysis[J]. IEEE Wireless Communications Letters, 2023, 12(6): 997–1001. doi: 10.1109/LWC.2023.3256187.
    [22] LIANG Wei, NG S X, DING Zhiguo, et al. User grouping, spectrum and power allocation for energy efficient MEC aided cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(6): 2383–2396. doi: 10.1109/TCCN.2024.3401752.
    [23] GUO Kefeng, LIN Min, ZHANG Bangning, et al. On the performance of LMS communication with hardware impairments and interference[J]. IEEE Transactions on Communications, 2019, 67(2): 1490–1505. doi: 10.1109/TCOMM.2018.2878848.
    [24] SHUAI Haifeng, GUO Kefeng, AN Kang, et al. Transmit antenna selection in NOMA-based integrated satellite-HAP-terrestrial networks with imperfect CSI and SIC[J]. IEEE Wireless Communications Letters, 2022, 11(8): 1565–1569. doi: 10.1109/LWC.2022.3165710.
    [25] LI Bin, FEI Zesong, XU Xiaoming, et al. Resource allocations for secure cognitive satellite-terrestrial networks[J]. IEEE Wireless Communications Letters, 2018, 7(1): 78–81. doi: 10.1109/LWC.2017.2755014.
    [26] DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1362–1377. doi: 10.1109/TWC.2021.3103764.
    [27] MORELLI M, KUO C C J, and PUN M O. Synchronization techniques for orthogonal frequency division multiple access (OFDMA): A tutorial review[J]. Proceedings of the IEEE, 2007, 95(7): 1394–1427. doi: 10.1109/JPROC.2007.897979.
    [28] ZENG Ming, LI Xingwang, LI Gen, et al. Sum rate maximization for IRS-assisted uplink NOMA[J]. IEEE Communications Letters, 2021, 25(1): 234–238. doi: 10.1109/LCOMM.2020.3025978.
    [29] HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364.
    [30] YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225.
    [31] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [32] LIANG Wei, MA Shaobo, YANG Siyuan, et al. Hierarchical matching algorithm for relay selection in MEC-aided ultra-dense UAV networks[J]. Drones, 2023, 7(9): 579. doi: 10.3390/drones7090579.
    [33] LIANG Wei, WEN Shuhui, LI Lixin, et al. Distributed user pairing and effective computation offloading in aerial edge networks[J]. Chinese Journal of Aeronautics, 2024, 37(4): 378–390. doi: 10.1016/j.cja.2023.10.028.
    [34] 徐子蒙, 王博文, 云霄, 等. 灾后无人机不确定偏好序下稳定中继选择方法[J]. 西安电子科技大学学报, 2022, 49(6): 32–41,50. doi: 10.19665/j.issn1001-2400.2022.06.005.

    XU Zimeng, WANG Bowen, YUN Xiao, et al. Stable relay selection method under an uncertain preference ordinal for UAV in post-disaster[J]. Journal of Xidian University, 2022, 49(6): 32–41,50. doi: 10.19665/j.issn1001-2400.2022.06.005.
    [35] ZHANG Han, ZHANG Dekun, MENG Weixiao, et al. User pairing algorithm with SIC in non-orthogonal multiple access system[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–6. doi: 10.1109/ICC.2016.7511620.
    [36] ALMRADI A, XIAO Pei, and HAMDI K A. Hop-by-Hop ZF beamforming for MIMO full-duplex relaying with co-channel interference[J]. IEEE Transactions on Communications, 2018, 66(12): 6135–6149. doi: 10.1109/TCOMM.2018.2863723.
    [37] AL-OBIEDOLLAH H M, CUMANAN K, THIYAGALINGAM J, et al. Energy efficient beamforming design for MISO non-orthogonal multiple access systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4117–4131. doi: 10.1109/TCOMM.2019.2900634.
    [38] ZHOU Xiaobo, LI Jun, SHU Feng, et al. Secure SWIPT for directional modulation-aided AF relaying networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 253–268. doi: 10.1109/JSAC.2018.2872372.
    [39] MU Xidong, LIU Yuanwei, GUO Li, et al. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6884–6898. doi: 10.1109/TWC.2020.3006915.
    [40] DUAN Ruiyang, WANG Jingjing, JIANG Chunxiao, et al. Resource allocation for multi-UAV aided IoT NOMA uplink transmission systems[J]. IEEE Internet of Things Journal, 2019, 6(4): 7025–7037. doi: 10.1109/JIOT.2019.2913473.
    [41] CHU Jianhang, CHEN Xiaoming, ZHONG Caijun, et al. Robust design for NOMA-based multibeam LEO satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(3): 1959–1970. doi: 10.1109/JIOT.2020.3015995.
    [42] FANG Fang, WU Bibo, FU Shu, et al. Energy-efficient design of STAR-RIS aided MIMO-NOMA networks[J]. IEEE Transactions on Communications, 2023, 71(1): 498–511. doi: 10.1109/TCOMM.2022.3223706.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  45
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-06-06
  • 网络出版日期:  2025-06-21

目录

    /

    返回文章
    返回