高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外源雷达信道多普勒信息稀疏表示模型和目标探测方法

赵志欣 林应运 郑怡群 周辉林

赵志欣, 林应运, 郑怡群, 周辉林. 外源雷达信道多普勒信息稀疏表示模型和目标探测方法[J]. 电子与信息学报, 2025, 47(6): 1816-1825. doi: 10.11999/JEIT250076
引用本文: 赵志欣, 林应运, 郑怡群, 周辉林. 外源雷达信道多普勒信息稀疏表示模型和目标探测方法[J]. 电子与信息学报, 2025, 47(6): 1816-1825. doi: 10.11999/JEIT250076
ZHAO Zhixin, LIN Yingyun, ZHENG Yiqun, ZHOU Huilin. Channel Doppler Information-based Sparse Representation Model and Target Detection Method in Passive Radar[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1816-1825. doi: 10.11999/JEIT250076
Citation: ZHAO Zhixin, LIN Yingyun, ZHENG Yiqun, ZHOU Huilin. Channel Doppler Information-based Sparse Representation Model and Target Detection Method in Passive Radar[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1816-1825. doi: 10.11999/JEIT250076

外源雷达信道多普勒信息稀疏表示模型和目标探测方法

doi: 10.11999/JEIT250076 cstr: 32379.14.JEIT250076
基金项目: 国家自然科学基金(62261036);江西省自然科学基金(20224BAB202003, 20242BAB23010)
详细信息
    作者简介:

    赵志欣:女,副教授,博士,主要研究方向为雷达信号处理

    林应运:男,硕士生,主要研究方向为外辐射源雷达信号处理

    郑怡群:女,硕士生,主要研究方向为外辐射源雷达信号处理

    周辉林:男,教授,博士,主要研究方向为超宽带雷达信号处理

    通讯作者:

    赵志欣 zhaozhixin@ncu.edu.cn

  • 中图分类号: TN958.97

Channel Doppler Information-based Sparse Representation Model and Target Detection Method in Passive Radar

Funds: The National Natural Science Foundation of China(62261036), The Natural Science Foundation of Jiangxi Province (20224BAB202003, 20242BAB23010)
  • 摘要: 近年来,基于时域或子载波域数据的稀疏表示理论为正交频分复用(OFDM)波形外源雷达目标探测提供了新的方法,可以提高目标参数的分辨率。然而该应用还面临着一些难题,一方面较高分辨率要求下构建稀疏字典时,不仅需具有较长相干积累时间的参考信号样本,稀疏字典的矩阵维度也随之变高进而导致稀疏重建的计算成本很高;另一方面现有的稀疏模型大都未考虑直达波或强多径等杂波对弱目标回波的掩盖问题,对于杂波中的较低信噪比目标重建结果不稳定。在此基础上,该文利用OFDM波形外源雷达的信道多普勒信息,提出了一种不仅字典矩阵具有较低稀疏字典维度、可离线生成,且可实现杂波抑制的稀疏表示模型,利用该模型不仅可一次稀疏优化求解生成距离多普勒图实现目标探测,还能降低稀疏重建的迭代次数要求。最后基于仿真和实测结果验证了本文所提方法相较于时域或有效子载波域数据稀疏模型的目标探测性能优势。
  • 图  1  仿真条件下得到的RD图

    图  2  基于不同稀疏模型得到的PSLR与目标信噪比的关系

    图  3  基于不同稀疏模型得到的ISLR与目标信噪比的关系

    图  4  典型实验数据1的处理结果

    图  5  典型实验数据2的处理结果

    表  1  仿真参数

    多径杂波 目标1 目标2
    时延单元 0:1:30 7 10
    多普勒频移(Hz) 0 6.2 –5.4
    杂噪比(dB) 60,46:–1:17 –7 –20
    下载: 导出CSV

    表  2  OMP计算复杂度

    方法 基于时域稀疏模型的探测方法 基于有效子载波稀疏模型的探测方法 基于所提稀疏模型的探测方法
    计算复杂度 ${O}(4L{N_{\rm e}}MG)$ ${O}(4L{N_{\mathrm{v}}}MG)$ ${O}(8LR{f_{\max }}{N_{\rm u}}M{G_{\mathrm{c}}}/f)$
    下载: 导出CSV
  • [1] COLONE F, FILIPPINI F, and PASTINA D. Passive radar: Past, present, and future challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(1): 54–69. doi: 10.1109/MAES.2022.3221685.
    [2] SUN Quande, SHAN Tao, FENG Yuan, et al. A frequency domain clutter suppression approach for passive radar[J]. IEEE Sensors Journal, 2024, 24(9): 14916–14929. doi: 10.1109/JSEN.2024.3382103.
    [3] 万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143.

    WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
    [4] WANG Xiaojiang and ZHANG Zhenkai. Joint range and velocity estimation for orthogonal frequency division multiplexing-based high-speed integrated radar and communications system[J]. IET Communications, 2022, 16(9): 1005–1019. doi: 10.1049/cmu2.12403.
    [5] HUANG Chuan, LI Zhongyu, AN Hongyang, et al. Maritime moving target detection using multiframe recursion association in GNSS-based passive radar[J]. IEEE Sensors Journal, 2024, 24(5): 6380–6391. doi: 10.1109/JSEN.2023.3343924.
    [6] SAMCZYŃSKI P, ABRATKIEWICZ K, PŁOTKA M, et al. 5G network-based passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5108209. doi: 10.1109/TGRS.2021.3137904.
    [7] YI Jianxin, WAN Xianrong, and LEUNG H. 0-regularized least squares versus matched filtering[J]. Signal Processing, 2022, 192: 108398. doi: 10.1016/j.sigpro.2021.108398.
    [8] 全英汇, 吴耀君, 段丽宁, 等. 基于稀疏恢复的雷达信号处理研究综述[J]. 雷达学报, 2024, 13(1): 46–67. doi: 10.12000/JR23211.

    QUAN Yinghui, WU Yaojun, DUAN Lining, et al. A review of radar signal processing based on sparse recovery[J]. Journal of Radars, 2024, 13(1): 46–67. doi: 10.12000/JR23211.
    [9] LAI Hongjun, YE Kun, SUN Haixin, et al. Atomic norm-based joint delay-doppler shift estimation for OFDM passive radar[J]. IEEE Signal Processing Letters, 2024, 31: 36–40. doi: 10.1109/LSP.2023.3341391.
    [10] 史海旭, 徐仲秋, 李光祚, 等. 利用稀疏CP-OFDM的SAR抗干扰成像方法研究[J]. 电子与信息学报, 2024, 46(12): 4441–4450. doi: 10.11999/JEIT240092.

    SHI Haixu, XU Zhongqiu, LI Guangzuo, et al. Research on SAR anti-jamming imaging method with sparse CP-OFDM[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4441–4450. doi: 10.11999/JEIT240092.
    [11] WU Min and HAO Chengpeng. Super-resolution TOA and AOA estimation for OFDM radar systems based on compressed sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5730–5740. doi: 10.1109/TAES.2022.3178393.
    [12] NIKAEIN H, ZEFREH R G, and GAZOR S. Target detection and interference cancellation in passive radar sensors via group-sparse regression[J]. IEEE Sensors Journal, 2023, 23(18): 21484–21492. doi: 10.1109/JSEN.2023.3300887.
    [13] NIKAEIN H, SHEIKHI A, and GAZOR S. Target detection in passive radar sensors using least angle regression[J]. IEEE Sensors Journal, 2021, 21(4): 4533–4542. doi: 10.1109/JSEN.2020.3035630.
    [14] WEN Jinfang, YI Jianxin, and WAN Xianrong. Sparse representation for target parameter estimation in CDR-based passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1024–1028. doi: 10.1109/LGRS.2020.2991743.
    [15] 赵志欣, 朱斯航, 洪升, 等. 基于数字调幅广播外辐射源雷达的弱目标检测[J]. 兵工学报, 2017, 38(11): 2159–2165. doi: 10.3969/j.issn.1000-1093.2017.11.011.

    ZHAO Zhixin, ZHU Sihang, HONG Sheng, et al. Weak target detection of DRM-based passive bistatic radar[J]. Acta Armamentarii, 2017, 38(11): 2159–2165. doi: 10.3969/j.issn.1000-1093.2017.11.011.
    [16] 李文静, 李卓林, 袁振涛. 基于稀疏重构的海杂波抑制和目标提取算法[J]. 系统工程与电子技术, 2022, 44(3): 777–785. doi: 10.12305/j.issn.1001-506X.2022.03.09.

    LI Wenjing, LI Zhuolin, and YUAN Zhentao. Sea clutter suppression and target extraction algorithm based on sparse reconstruction[J]. Systems Engineering and Electronics, 2022, 44(3): 777–785. doi: 10.12305/j.issn.1001-506X.2022.03.09.
    [17] 白宗龙, 师黎明, 孙金玮. 基于自适应LASSO先验的稀疏贝叶斯学习算法[J]. 自动化学报, 2022, 48(5): 1193–1208. doi: 10.16383/j.aas.c210022.

    BAI Zonglong, SHI Liming, and SUN Jinwei. Sparse Bayesian learning using adaptive LASSO priors[J]. Acta Automatica Sinica, 2022, 48(5): 1193–1208. doi: 10.16383/j.aas.c210022.
    [18] SAHOO S K and MAKUR A. Signal recovery from random measurements via extended orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2015, 63(10): 2572–2581. doi: 10.1109/TSP.2015.2413384.
    [19] LELLOUCH G, MISHRA A K, and INGGS M. Design of OFDM radar pulses using genetic algorithm based techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1953–1966. doi: 10.1109/TAES.2016.140671.
    [20] COLONE F, O'HAGAN D W, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698–722. doi: 10.1109/TAES.2009.5089551.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  78
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-05-30
  • 网络出版日期:  2025-06-11
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回