高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于BRAM分段同步查表的测试向量编解码方案

易茂祥 张佳桐 鲁迎春 梁华国 马利祥

易茂祥, 张佳桐, 鲁迎春, 梁华国, 马利祥. 一种基于BRAM分段同步查表的测试向量编解码方案[J]. 电子与信息学报. doi: 10.11999/JEIT250053
引用本文: 易茂祥, 张佳桐, 鲁迎春, 梁华国, 马利祥. 一种基于BRAM分段同步查表的测试向量编解码方案[J]. 电子与信息学报. doi: 10.11999/JEIT250053
YI Maoxiang, ZHANG Jiatong, LU Yingchun, LIANG Huaguo, MA Lixiang. A Test Vector CODEC Scheme Based on BRAM-Segmented Synchronous Table Lookup[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250053
Citation: YI Maoxiang, ZHANG Jiatong, LU Yingchun, LIANG Huaguo, MA Lixiang. A Test Vector CODEC Scheme Based on BRAM-Segmented Synchronous Table Lookup[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250053

一种基于BRAM分段同步查表的测试向量编解码方案

doi: 10.11999/JEIT250053 cstr: 32379.14.JEIT250053
基金项目: 国家自然科学基金(62027815),毫米波全国重点实验室开放课题(K202530)
详细信息
    作者简介:

    易茂祥:男,教授,研究方向为集成电路设计与测试

    张佳桐:男,硕士生,研究方向为集成电路设计与测试

    鲁迎春:男,副教授,研究方向为集成电路可测试性与安全性设计

    梁华国:男,教授,研究方向为集成电路设计与测试

    马利祥:男,高级工程师,研究方向为无线电技术

    通讯作者:

    马利祥 lxma@iflytek.com

  • 中图分类号: TN407

A Test Vector CODEC Scheme Based on BRAM-Segmented Synchronous Table Lookup

Funds: The National Natural Science Foundation of China (62027815), Open Project of State Key Laboratory of Millimeter Waves (K202530)
  • 摘要: 基于ATE的集成电路制造测试是芯片产业链的重要一环,而逻辑测试向量的编解码及应用效率,对芯片的测试成本有着重要影响。因此,结合现代FPGA内集成高速BRAM的特点,该文提出一种基于分量统计的测试向量编码方案,用于将被测芯片的全部测试向量生成分量编码表文件。与此同时,设计了一种BRAM分段同步查表控制电路,采用并行单端口BRAM结构多段地址分配模块和写优先访问时序模式,实现测试向量各分量的同步查表和并行输出。该文采用Vivado与Xilinx K7 FPGA开发平台,对查表电路进行了设计和仿真。配置了宽度64 bit和定制分段地址深度的BRAM,结合数据传输和存储地址产生控制逻辑,利用UART接口将分量编码表COE文件下载到目标BRAM中,并取得分量在BRAM中的地址,将其应用于BRAM分段同步查表电路。仿真结果充分验证了同步查表电路功能的正确性。将建议方案用于工程ATE测试板的设计,可以有效提高ATE逻辑测试指令的执行效率。
  • 图  1  逻辑测试向量文件构成示例

    图  2  单端口BRAM框图

    图  3  分段查表电路逻辑框图

    图  4  分段查表电路结构图

    图  5  COE文件说明

    图  6  单个BRAM读取COE初始数据仿真结果

    图  7  单个BRAM更新数据仿真结果

    图  8  单个BRAM输出更新后的数据分段查表读取仿真结果

    图  9  分段同步查表电路模块数据下载仿真结果

    图  10  分段同步查表电路模块查表输出仿真结果

    图  11  多模块联合(数据更新)仿真结果

    图  12  多模块联合(查表输出)仿真结果

    图  13  完整的分段查表同步并行输出的数据正确性验证结果

    表  1  测试向量位符定义及其编码

    位符/
    分量
    驱动捕获高阻残值含义
    DCMCZCRV
    01000驱动0
    11001驱动1
    L0100捕获0
    H0101捕获1
    X0000无关0
    W0001无关1
    Z0110捕获高阻0
    Y0111捕获高阻1
    E1110用于诊断或保留
    F1111
    C1100
    D1101
    A1010
    B1011
    M0010
    N0011
    下载: 导出CSV

    表  2  ATE用户板通道与DUT(74HC138)引脚及其逻辑测试向量配置

    ATE CH16151413121110987654321
    DUT PinA0A1A2G2AG2BG1Y7Y6Y5Y4Y3Y2Y1Y0
    向量1XXXXXXXXXXXXXX
    向量21XXXXXHHHHHHHH
    向量3X1XXXXHHHHHHHH
    向量4XX0XXXHHHHHHHH
    向量5001000LHHHHHHH
    向量6001001HLHHHHHH
    向量7001010HHLHHHHH
    向量8001011HHHLHHHH
    向量9001100HHHHLHHH
    向量10001101HHHHHLHH
    向量11001110HHHHHHLH
    向量12001111HHHHHHHL
    向量13XXXXXXXXXXXXXX
    下载: 导出CSV

    表  3  与直接编码方案的向量读取延迟比较

    方案原始向量长度(bit)SDRAM存储 (bit)分量BRAM存储突发读次数命令延迟(ns)访问延迟(ns)读取延迟(ns)
    直接编码644×64+32345120165
    本文6432+64+321154055
    下载: 导出CSV

    表  4  与传统编码测试方案的定性比较

    代表方案 基本原理 压缩对象 预处理* 解码方式 解码器开销 适用场景 TAT** 工程满足
    游程编码[3,4] 部分向量重复次数统计 激励 串行解码 较大 串行扫描测试 不完全
    FDR编码[6,7] 部分向量出现频率统计 激励 串行解码 较大 串行扫描测试 不完全
    字典编码[811] 直接向量相容统计 激励 串行/并行解码 串行扫描测试 较大 不完全
    本文 向量分量统计 激励/响应 BRAM分段并行查表 并行非扫描测试 完全
    注:*包括对测试集向量的X位填充、重复向量删除、重新排序等,且不可回复,导致原始测试工程目标的不完全满足,**测试应用时间(Test Application Time)
    下载: 导出CSV
  • [1] CAREY D R. Introduction to automated test systems–back to basics[C]. IEEE International Automatic Testing Conference (AUTOTESTCON), National Harbor, USA, 2019: 1–7. doi: 10.1109/AUTOTESTCON43700.2019.8961061.
    [2] 余蓓敏. 高速数电芯片参数测试方案优化研究[J]. 齐齐哈尔大学学报: 自然科学版, 2022, 38(2): 27–31. doi: 10.3969/j.issn.1007-984X.2022.02.006.

    YU Beimin. Research on parameter test scheme optimization of high speed digital and electrical chip[J]. Journal of Qiqihar University: Natural Science Edition, 2022, 38(2): 27–31. doi: 10.3969/j.issn.1007-984X.2022.02.006.
    [3] 俞洋, 彭喜元, 张毅刚. 基于重复子向量的测试数据压缩算法[J]. 仪器仪表学报, 2009, 30(2): 356–361. doi: 10.3321/j.issn:0254-3087.2009.02.025.

    YU Yang, PENG Xiyuan, and ZHANG Yigang. Test data compression method for multiple scan chains based on repeated sub-vectors[J]. Chinese Journal of Scientific Instrument, 2009, 30(2): 356–361. doi: 10.3321/j.issn:0254-3087.2009.02.025.
    [4] 詹文法, 陶鹏程. 最小游程切换点标记编码压缩方法[J]. 清华大学学报: 自然科学版, 2020, 60(10): 837–844. doi: 10.16511/j.cnki.qhdxxb.2020.26.003.

    ZHAN Wenfa and TAO Pengcheng. Minimum run-changing point mark coding compression method[J]. Journal of Tsinghua University: Science and Technology, 2020, 60(10): 837–844. doi: 10.16511/j.cnki.qhdxxb.2020.26.003.
    [5] SSHIMMI S and RAHIMI M. Leveraging code-test co-evolution patterns for automated test case recommendation[C]. The 3rd ACM/IEEE International Conference on Automation of Software Test (AST), Pittsburgh, USA, 2022: 65–76. doi: 10.1145/3524481.3527222.
    [6] HE Hongxi, HU Jing, LI Zhi, et al. Integrated circuit test data division based on clustering algorithm[C]. The 9th International Conference on Electronic Technology and Information Science (ICETIS), Hangzhou, China, 2024: 604–608. doi: 10.1109/ICETIS61828.2024.10593743.
    [7] 李瑞. 一种混合分数与FDR码的测试数据压缩方法[D]. [硕士论文], 安庆师范大学, 2022. doi: 10.27761/d.cnki.gaqsf.2022.000029.

    LI Rui. Test data compression method of mixed fraction and FDR code[D]. [Master dissertation], Anqing Normal University, 2022. doi: 10.27761/d.cnki.gaqsf.2022.000029.
    [8] JHANCY MABEL D J and VIOLA STELLA MARY M C. A proficient test data compression and decompression system for enhanced test competence in SOC testing[C]. International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 2023: 916–920. doi: 10.1109/ICICT57646.2023.10134445.
    [9] CHEN Rui and XU Lihao. SnappyR: A new high-speed lossless data compression algorithm[C]. Data Compression Conference (DCC), Snowbird, USA, 2023: 334. doi: 10.1109/DCC55655.2023.00052.
    [10] ROSE J D, DHANUSHKKAR H, and JAGADISHAN M. A self-learning and lossless dictionary-based compression algorithm[C]. IEEE International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2024: 1–7. doi: 10.1109/ACCAI61061.2024.10601915.
    [11] CHEN Tian, LIN Chenxin, LIANG Huaguo, et al. A dictionary-based test data compression method using tri-state coding[C]. IEEE 27th Asian Test Symposium (ATS), Hefei, China, 2018: 42–47. doi: 10.1109/ATS.2018.00019.
    [12] ZHANG Minghe, HUANG Guanglun, JI Guoliang, et al. A scan slice reordering algorithm based on minimizing entropy to enhance test data compression efficiency[C]. IEEE International Test Conference in Asia (ITC-Asia), Changsha, China, 2024: 1–6. doi: 10.1109/ITC-Asia62534.2024.10661362.
    [13] 李旺康. 基于SOC的测试数据压缩算法研究与分析[D]. [硕士论文], 武汉工程大学, 2023. doi: 10.27727/d.cnki.gwhxc.2023.000658.

    LI Wangkang. Research on test data compression algorithm based on SOC and analysis[D]. [Master dissertation], Wuhan Institute of Technology, 2023. doi: 10.27727/d.cnki.gwhxc.2023.000658.
    [14] NIMARA S, BONCALO O, AMARICAI A, et al. FPGA architecture of multi-codeword LDPC decoder with efficient BRAM utilization[C]. IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Kosice, Slovakia, 2016: 1–4. doi: 10.1109/DDECS.2016.7482452.
    [15] PFEIFER P and PLIVA Z. On utilization of BRAM in FPGA for advanced measurements in mechatronics[C]. IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Liberec, Czech Republic, 2015: 1–6. doi: 10.1109/ECMSM.2015.7208700.
    [16] MANJULA C and JAYADEVAPPA D. Command driven scalable & programmable FPGA based digital test pattern generator[C]. International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017: 440–447. doi: 10.1109/ICEECCOT.2017.8284545.
    [17] ZHANG Xinrui, WANG Jian, WANG Yuan, et al. BRAM-based asynchronous FIFO in FPGA with optimized cycle latency[C]. The 11th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSSICT), Xi'an, China, 2012: 1–3. doi: 10.1109/ICSICT.2012.6467891.
    [18] PFEIFER P and PLIVA Z. Delay-fault run-time XOR-less aging detection unit using BRAM in modern FPGAs[C]. The 13th IEEE Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2012: 81–84. doi: 10.1109/BEC.2012.6376820.
    [19] NG J S, CHEN Juncheng, WU Si, et al. Improving FPGA-based Async-logic AES accelerator with the integration of sync-logic block RAMs[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181344.
    [20] KABIR M D A, HOLLIS J, PANAHI A, et al. Making BRAMs compute: Creating scalable computational memory fabric overlays[C]. IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Marina Del Rey, USA, 2023: 224. doi: 10.1109/FCCM57271.2023.00052.
    [21] LAI B C C and HUANG Kunhua. An efficient hierarchical banking structure for algorithmic multiported memory on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(10): 2776–2788. doi: 10.1109/TVLSI.2017.2717448.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  50
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回