高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波熵特征的无人机射频信号识别算法研究

刘冰 时明心 刘佳琪

刘冰, 时明心, 刘佳琪. 基于小波熵特征的无人机射频信号识别算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250051
引用本文: 刘冰, 时明心, 刘佳琪. 基于小波熵特征的无人机射频信号识别算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250051
LIU Bing, SHI Mingxin, LIU Jiaqi. Research on Unmanned Aircraft Radio Frequency Signal Recognition Algorithm Based on Wavelet Entropy Features[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250051
Citation: LIU Bing, SHI Mingxin, LIU Jiaqi. Research on Unmanned Aircraft Radio Frequency Signal Recognition Algorithm Based on Wavelet Entropy Features[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250051

基于小波熵特征的无人机射频信号识别算法研究

doi: 10.11999/JEIT250051
基金项目: 国家自然科学基金青年项目(6240011305),天津市城市空中交通系统技术与装备重点实验室开放课题基金(TJKL-UAM-202403),石家庄市垂直起降固定翼无人机智能研究重点实验室开放课题(KF2024-2),云南省无人自主系统重点实验室开放课题;天津市自然科学基金多元投入智慧民航重点项目(24JCZDJC0090)
详细信息
    作者简介:

    刘冰:男,博士,讲师,研究方向为信号处理,eVTOL探测与感知

    时明心:男,硕士生,研究方向为机器学习,目标探测

    刘佳琪:女,硕士生,研究方向为模式识别,未来城市空中交通系统

    通讯作者:

    刘冰 liub@cauc.edu.cn

  • 中图分类号: TN98

Research on Unmanned Aircraft Radio Frequency Signal Recognition Algorithm Based on Wavelet Entropy Features

Funds: The National Natural Science Foundation of China (6240011305), The Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System Open Fund (TJKL-UAM-202403), Shijiazhuang Vertical Take-off and Landing Fixed-wing UAV Intelligence Research Key Laboratory Open Fund (KF2024-2), Tianjin Natural Science Foundation Multi-investment in Intelligent Civil Aviation Key Projects (24JCZDJC0090)
  • 摘要: 随着无人机技术的迅猛发展及其在多个领域的广泛应用,确保无人机的安全飞行和有效监管成为了一个重要的研究课题。该文提出一种基于小波熵特征和优化神经网络的无人机飞控射频信号分类识别方法,旨在解决复杂电磁环境中无人机信号识别的问题。通过提取射频信号的小波熵特征并构建特征向量,结合由大蔗鼠优化算法(GCRA)优化的支持向量机(SVM)分类器,实现了对不同型号无人机的有效分类。实验使用了公开数据集DroneRFa中的常见无人机射频信号,经过10-折交叉验证测试,该方法对于6种型号的无人机分类准确率达到了97%以上,最高可达99%,证明了所提方法的有效性和可靠性。该研究为无人机自主避障、路径规划以及多机协同作业提供了重要的技术支持。
  • 图  1  DroneRFa数据集公开的部分无人机型号

    图  2  无人机飞控射频信号4通道小波分解

    图  3  4维小波熵特征矩阵结构示意图

    图  4  GCRA搜寻函数最优值结果

    图  5  GCRA优化SVM参数算法流程图

    图  6  GCRA优化SVM适应度变化曲线

    图  7  6种型号无人机射频信号分类混淆矩阵

    表  1  $ F $检验结果

    特征通道$ F $检验返回$ p $值结论
    RF0_I$ 1.55 \times {10^{ - 7}} $拒绝原假设,接受备择假设
    RF0_Q$ 1.16 \times {10^{ - 7}} $拒绝原假设,接受备择假设
    RF1_I$ 1.94 \times {10^{ - 9}} $拒绝原假设,接受备择假设
    RF1_Q$ 1.04 \times {10^{ - 12}} $拒绝原假设,接受备择假设
    下载: 导出CSV

    表  2  6种型号无人机飞控射频信号分类准确率

    型号测试正确样本数识别准确率±方差
    DJ Phantom 398698.6%±0.000 13
    DJI AVATA98298.2%±0.000 21
    DJI MATRICE 20098098.0%±0.000 42
    DJI Air 2S97697.6%±0.000 14
    DJI Mini 3 Pro97797.7%±0.000 46
    DJI Inspire299099.0%±0.000 62
    下载: 导出CSV

    表  3  对照试验结果

    模型选择DJ Phantom 3DJI AVATADJI MATRICE 200DJI Air 2SDJI Mini 3 ProDJI Inspire 2平均准确率±方差
    SVM92.3%91.8%91.5%91.1%91.3%92.5%91.7%±0.000 49
    PSO-SVM95.2%94.8%94.5%94.1%94.3%95.5%94.7%±0.000 13
    GA-SVM94.9%94.4%94.1%93.8%93.9%95.0%94.2%±0.000 49
    GWO-SVM96.1%95.7%95.3%95.0%95.2%96.5%95.6%±0.000 72
    GCRA-SVM98.6%98.2%98.0%97.6%97.7%99.0%98.5%±0.000 32
    下载: 导出CSV
  • [1] 邱小剑, 骆博雅, 付珍, 等. 国内外反无人机技术发展综述[J]. 战术导弹技术, 2024(5): 63–73,98. doi: 10.16358/j.issn.1009-1300.20240095.

    QIU Xiaojian, LUO Boya, FU Zhen, et al. An overview on development of domestic and foreign anti-UAV technology[J]. Tactical Missile Technology, 2024(5): 63–73,98. doi: 10.16358/j.issn.1009-1300.20240095.
    [2] 付鑫, 赵然, 梁延峰, 等. 反无人机蜂群技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(5): 421–428. doi: 10.3969/j.issn.1673-5692.2022.05.003.

    FU Xin, ZHAO Ran, LIANG Yanfeng, et al. Review on the development of anti UAV bee colony technology[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(5): 421–428. doi: 10.3969/j.issn.1673-5692.2022.05.003.
    [3] SHAKHATREH H, SAWALMEH A, HAYAJNEH K F, et al. A systematic review of interference mitigation techniques in current and future UAV-Assisted wireless networks[J]. IEEE Open Journal of the Communications Society, 2024, 5: 2815–2846. doi: 10.1109/OJCOMS.2024.3392623.
    [4] CHENG Nan, WU Shen, WANG Xiucheng, et al. AI for UAV-Assisted IoT applications: A comprehensive review[J]. IEEE Internet of Things Journal, 2023, 10(16): 14438–14461. doi: 10.1109/JIOT.2023.3268316.
    [5] SAVKIN A V and HUANG Hailong. A method for optimized deployment of a network of surveillance aerial drones[J]. IEEE Systems Journal, 2019, 13(4): 4474–4477. doi: 10.1109/JSYST.2019.2910080.
    [6] SHI Zhiguo, CHANG Xianyu, YANG Chaoqun, et al. An acoustic-based surveillance system for amateur drones detection and localization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2731–2739. doi: 10.1109/TVT.2020.2964110.
    [7] BERA B, DAS A K, GARG S, et al. Access control protocol for battlefield surveillance in drone-assisted IoT environment[J]. IEEE Internet of Things Journal, 2022, 9(4): 2708–2721. doi: 10.1109/JIOT.2020.3049003.
    [8] NGUYEN P, TRUONG H, RAVINDRANATHAN M, et al. Matthan: Drone presence detection by identifying physical signatures in the drone's RF communication[C]. The 15th Annual International Conference on Mobile Systems, Applications, and Services, New York, USA, 2017: 211–224. doi: 10.1145/3081333.3081354.
    [9] DE WIT J J M, HARMANNY R I A, and PRÉMEL-CABIC G. Micro-Doppler analysis of small UAVs[C]. 2012 9th European Radar Conference, Amsterdam, Netherlands, 2012: 210–213.
    [10] UNLU E, ZENOU E, RIVIERE N, et al. An autonomous drone surveillance and tracking architecture[C]. 2019 Autonomous Vehicles and Machines Conference, San Francisco, USA, 2019: 35.
    [11] 张瑞鑫, 黎宁, 张夏夏, 等. 基于优化CenterNet的低空无人机检测方法[J]. 北京航空航天大学学报, 2022, 48(11): 2335–2344. doi: 10.13700/j.bh.1001-5965.2021.0108.

    ZHANG Ruixin, LI Ning, ZHANG Xiaxia, et al. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335–2344. doi: 10.13700/j.bh.1001-5965.2021.0108.
    [12] 聂伟, 戴琪霏, 杨小龙, 等. 基于多维信号特征的无人机探测识别方法[J]. 电子与信息学报, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.

    NIE Wei, DAI Qifei, YANG Xiaolong, et al. Unmanned aerial vehicle detection and recognition method based on multi-dimensional signal feature[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.
    [13] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
    [14] 何正友, 蔡玉梅, 钱清泉. 小波熵理论及其在电力系统故障检测中的应用研究[J]. 中国电机工程学报, 2005, 25(5): 38–43. doi: 10.3321/j.issn:0258-8013.2005.05.007.

    HE Zhengyou, CAI Yumei, and QIAN Qingquan. A study of wavelet entropy theory and its application in electric power system fault detection[J]. Proceedings of the CSEE, 2005, 25(5): 38–43. doi: 10.3321/j.issn:0258-8013.2005.05.007.
    [15] BISIO I, GARIBOTTO C, LAVAGETTO F, et al. Blind detection: Advanced techniques for WiFi-based drone surveillance[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 938–946. doi: 10.1109/TVT.2018.2884767.
    [16] XIE Yuelei, JIANG Ping, GU Yi, et al. Dual-source detection and identification system based on UAV radio frequency signal[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2006215. doi: 10.1109/TIM.2021.3103565.
    [17] EZUMA M, ERDEN F, ANJINAPPA C K, et al. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference[J]. IEEE Open Journal of the Communications Society, 2020, 1: 60–76. doi: 10.1109/OJCOMS.2019.2955889.
    [18] 俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.

    YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
    [19] 茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程[M]. 2版. 北京: 高等教育出版社, 2011: 284–375.

    MAO Shisong, CHENG Yiming, and PU Xiaolong. Probability and Mathematical Statistics[M]. 2nd ed. Beijing: Higher Education Press, 2011: 284–375.
    [20] AGUSHAKA J O, EZUGWU A E, SAHA A K, et al. Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems[J]. Heliyon, 2024, 10(11): e31629. doi: 10.1016/j.heliyon.2024.e31629.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  29
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回